

This document may be used only for informational, training and noncommercial purposes. You are free to copy, distribute, publish and alter this document under the conditions that you give credit to the original author. 2009 - Maarten de Frankrijker, CISSP. Revised by Christian Reina, CISSP.

Concepts

CIA Negative: (DAD disclosure alteration and destruction) <u>Confidentiality</u> prevent unauthorized disclosure <u>Integrity</u> no unauthorized modifications, consistent data <u>Availability</u> reliable and timely accessible

Identification user claims identity, used for user access control Authentication testing of evidence of users identity Accountability determine actions to an individual person Authorization rights and permissions granted privacy level of confidentiality and privacy protections

Controls

<u>Prime objective</u> is to reduce the effects of security threats and vulnerabilities to a tolerable level Risk analysis process that analyses threat scenarios and

produces a representation of the estimated Potential loss <u>Types</u> Physical, Technical and Administrative

Information classification

<u>WHY?</u> Not all data has same value, demonstrates business commitment to security, Identify which information is most sensitive and vital Criteria Value, age, useful life, personal association

Levels

Government, military

- Unclassified
- Sensitive but unclassified (answers to test, Healthcare)
- Confidential (some damage)
- Secret (Serious damage)
- Top Secret (Grave damage)

Private sector

- Public
- Sensitive
- Private
- Confidential

Security Awareness

Technical training to react to situations, best practices for Security and network personnel Employees, need to understand policies then use presentations

and posters etc to get them aware

Losses

staff members pose more threat than external hackers loss of money stolen equipment, loss of time work hours loss off reputation declining trusts and loss of resources bandwidth theft

Security policies, standards and guidelines

Policies first and highest level of documentation

Very first is called Senior management Statement of Policy, Stating importance, support and commitment Types

- <u>Regulatory</u> (required due to laws, regulations, compliance and specific industry standards!)
- Advisory (not mandatory but strongly suggested)
- Informative to inform the reader

Information policy has classifications and defines level of access and method to store and transmit information Security policies has Authentications and defines technology used to control information access and distribution SYSTEM security policy lists hard software to be used and steps

to undertake to protect infrastructure

Standards Specify use of specific technologies in a uniform way Guidelines same as standards but not forced to follow Procedures Detailed steps to perform a task Baseline Minimum level of security

Security planning

Security Planning involves security scope, providing security management responsibilities and testing security measures for effectiveness. <u>Strategic 5 years Tactical shorter than strategic Operational day to day</u>, short term

Roles and responsibilities

Senior Manager ultimate responsibility Information security Officer functional responsibility Security Analyst Strategic, develops policies and guidelines Owner

- Responsible for asset
- Determine level of classification
- Review and change classification
- Can delegate responsibility to data custodian
- Authorize user privileges

Custodian

- Run regular backups/restores and validity of them
 - Insuring data integrity and security (CIA)
 - Maintaining records in accordance to classification
- Applies user authorization

End-user

- Uses information as their job
- Follow instructions in policies and guidelines
- Due care (prevent open view by e.g. Clean desk)
- Use corporation resources for corporation use

Auditor examines security controls

Legislative drivers

FISMA(federal agencies)

Phase 1 categorizing, selecting minimum controls, assessment Phase 2: create national network of secures services to assess **NIST** 8 elements reassessments owners have responsibilities. Benefits: consistent; comparable; repeatable **OECD**

accountability, awareness, ethics, etc loads of one word things

Risk Management

GOAL Determine impact of the threat and risk of threat occurring

ACTIVITIES

Primary (risk assessment, mitigation methodology) Secondary (data collection and sources for risk analysis)

Types of Risk

Inherent chance of making an error with no controls in place Control chance that controls in place with prevent, detect or control errors Detection chance that auditors won't find an error Residual risk remaining after control in place

<u>Business</u> concerns about effects of unforeseen circumstances <u>Overall</u> combination of all risks aka Audit risk

Preliminary Security Examination (PSE): Helps to gather the elements that you will need when the actual Risk Analysis takes place.

ANALYSIS

Steps: Identify assets, identify threats, and calculate risk. Qualitative HAPPY FACES

- Higher level , brainstorming, focus groups etc Quantitative VALUES!!
 - SLE (single Loss Expectancy) = Asset Value * Exposure factor (% lost of asset)
 - ALE (Annual loss expectancy) = SLE * ARO (Annualized Rate of occurrence)

Remedies: Accept, mitigate(reduce by implementing controls calculate costs-), Assign (insure the risk to transfer it), Avoid (stop business activity)

Loss= probability * cost

Risk Based Audit approach

- Planning and information gathering
- Access internal controls
- Compliancy testing
- Substantive tests
- Finalize the audit

gement Mana ecurity S omain

Access control

ACCESS is flow of information between a subject and an object CONTROL security features that control how users and systems communicate and interact with other systems and resources <u>Subject</u> is active entity that requests access to an object or data within the object (user, program)

<u>Object</u> is a passive entity that contains information (computer, database, file, program)

access control techniques support the access control models

CIA

Confidentiality

- assurance that information is not disclosure to unauthorized programs, users, processes
- encryption, logical and physical access control,
- The data needs to be classified

Integrity

 protecting data or a resource from being altered in an unauthorized fashion

Availability

- fault tolerance and recovery procedures
- depends on business and value to business

ΙΑΑΑ

Control

ccess

 \sim

omain

Identification

- ensuring that a subject is who he says he is
- Unique user name, account number etc OR an issuance (kevcard)
- must be non descriptive (you can't see what someone can do by the name)
- First piece of credentials

Authorization

- like password, phrase key token, pin
- looking at access control matrix or comparing security labels
- Stacking of authorizations is called Authorization Creep, too much rights is called excessive privileges
- Granted privileges and system granted default access
 default no access, give only access that's needed (=
- NEED TO KNOW)
- Second piece of credentials
- Strong Authentication if you use 2 out of the three authentications (know, has, is)AKA 2-factor authentication
- Something a person KNOWS, HAS, IS (knowledge, ownership, characteristics)

Accountability

- each subject is uniquely identified and actions are

recorded

Logical Access Controls: tools used for IAAA

Controls

Primary controls

Administrative

- Preventive: hiring policies, screening security awareness (also called soft-measures!)
 - Detective: screening behavior, job rotation, review of

audit records Technical (aka Logical)

- Preventive: protocols, encryption, biometrics smartcards, routers, firewalls
- Detective: IDS and **automatic** generated violation reports, audit logs

Physical

- Preventive: fences, guards, locks
- Detective: motion detectors, thermal detectors video cameras

Operational controls

Detective, Preventive (PASSWORDS TOO), Corrective(restore controls), Restore control (restore resources) deterrents

Types

Mandatory access control

Authorization depended on security labels which indicate clearance and classification of objects (**M**ilitary). Restriction: need to know can apply. Lattice based is part of it! (A as in mAndatory!). <u>Rule based access control</u>. Objects are: files, directories and devices

Discretionary access control

Access through ACL's. Discretionary can also mean: Controlled access protection (object reuse, protect audit trail). User directed access control (identity based and hybrid based are also forms of discretionary) Identity Based AC

Non-discretionary access control

A central authority determines what subjects have access based on policies. Role based/task based. Also lattice based can be applied (greatest lower, least upper bounds apply)

Something a user knows

PASSWORDS

cheap and commonly used password generators user chooses own (do triviality and policy checking)

One-time password aka dynamic password used only once Static password Same for each logon

Passphrase easiest to remember. Converted to a virtual password by the system.

Cognitive password: easy to remember like your mother's maiden name

Hacking

- access password file
- brute force attack (try many different characters) aka exhaustive
- dictionary attack (try many different words)
- Social engineering (convince an individual to give access)
- Rainbow Tables (tables with passwords that are already in hash format

password checker and password hacker

both programs that can find passwords (checker to see if its compliant, hacker to use it by the hacker)

hashing and encryption

- On windows system with utility SYSKEY. The hashed passwords will be encrypted in their store LM hash and NT Hash
- some OS's use Seed SALT or NONCE, random values added to the encryption process to add more complexity

Something a user has

Key, swipe card, access card, badge PASSWORDS. tokens

Static password token owner authenticates to token, token authenticates to the information system

Synchronous (TIME BASED) dynamic, uses time or a counter between the token and the authentication server, secure-ID is an example

asynchronous (NOT TIME BASED) server sends a nonce (random value) This goes into token device, encrypts and delivers a one-time password, with an added PIN its strong authentication **Challenge/response token** generates response on a system/workstation provided challenge

		Access control methodologies
Something a user is	KERBEROS	Centralized access control
What you do: behavioral	Kerberos addresses Confidentiality and integrity and	RADIUS
What you are: physical	authentication, not availability	Remote connectivity via dial in (user dials in to access server.
BIOMETRICS	Kerberos Is based on symmetric key cryptology (and is not a	access server prompt for credentials, user enters credentials and
- Most expensive	propriety control)	forwards to radius server radius server accepts or rejects) USES
- Accentable 2 minutes per person for enrollment time	Time synchronization is critical	LIDP Incorporates an AS and dynamic/static password
- Acceptable 10 people per minute throughout time	MIT project Athena	DIAMETER- remote connectivity using phone wireless etc. more
- IPIS is the same as long as you live	Kerberos is included in windows now (replaced NTI M–NT-I AN	socure than radius
TVDE 1 orror: Ealso rejection rate EPD	Manager)	CALLBACK: system calls back to specific location (danger in user
- TIFE Terror: False Assentance rote FAR	Passwords are never exchanged only bashes of passwords	forwarding number)
- TIPE 2 error. Paise Acceptance fale PAR	Repetite: inevpensive, leads of OS's mature protocol	CLAD (nort of DDD) supports oper untion
- CER CIOSSOVEI EIIOI Rate OI EER Equal EIIOI Iate,	Disadvantage: takes time to administer, can be bettlenock or	TACACE user id and static recovered for notwork second via TOP
	single point of foilure	TACACS. User-to and static password for network access via TCP
accurate the system.	The term realm indicates an authentication administrative domain	XTACACS separates authentication, authorization and accounting
No sunlight in Iris scanner	The term real indicates an authentication authinistrative domain.	processes
zephyr chart = Iris scans	Its intention is to establish the boundaries within which an	TACACS+: stronger through use of tokens
Finger print: stores full fingerprint (one- to-many	authentication server has the authority to authenticate a user, host	
identification), finger scan only the features (one to one	or service.	Decentralized access control
identification).	Uses symmetric Key cryptography	Databases
inger scan most widely used today	- KDC Key Distribution Center, grants tickets to client for	Relational databases allow queries
cceptability Issues: privacy, physical, psychological	specific servers. Knows all secret keys of all clients and	Object oriented databases do not support queries
	servers from the network	
	- AS (Authentication server)	3 parts
	TGS - Ticket granting server	Data structures called tables or relations
		- Integrity rules
Fingerprints: Are made up of ridge endings and bifurcations	Working:	- Operators on the data in tables
exhibited by the friction ridges and other detailed	Client authenticates to the KDC. His passwords becomes an one	
characteristics that are called minutiae.	way hasted + time = secret key to the AS and gets a TGT Ticket	Relation: basis of the database consists of a two dimensional
Retina Scans: Scans the blood-vessel pattern of the retina	Granting Ticket,	table
on the backside of the eyeball.	Client then accesses the TGS with the TGT he has and gets a	
Iris Scans: Scan the colored portion of the eye that	ticket to service.	ROWS are records of tuples. Number of rows is cardinality
surrounds the pupil.	Then the user can use this ticket to service to use the service	
Facial Scans: Takes attributes and characteristics like bone		COLUMNS are attributes. Number of columns is the degree
structures, nose ridges, eye widths, forehead sizes and chin	SESAME	
shapes into account.	 Public Key Cryptology 	PRIMARY KEY: unique identifier in a table
Paim Scans: The paim has creases, ridges and grooves	- European	
throughout it that are unique to a specific person.	 Needham-Schroeder protocol 	Foreign Keys: used to enforce relationship between two tables
Hand Geometry: The shape of a person's hand (the length	Weakness: only authenticates the first block and not the complete	This is also called referentional integrity, that you don't have a
and width of the hand and fingers) measures hand geometry	message	nonevistent reference
Voice Print: Distinguishing differences in people's speech	Two tickets:	
sounds and natterns	 One authentication, like Kerberos 	Smort Cardo
Signature Dynamice: Electrical signals of speed and time	 Other defines the access privileges a user has 	
that can be cantured when a person writes a signature	 Works with PACS (Privileged Attribute Certificates) 	IEC 14443 = Smartcards
Keybeard Dynamics: Conturns the electrical signals when a	- sesame uses both symmetric as asymmetric encryption	The combi-card also known as a dual-interface card has one
• Reyboard Dynamics: Captures the electrical signals when a	(thus improvement upon Kerberos)	smart chip embedded in the card that can be accessed through
person types a certain phrase.	(either contact pads or an embedded antenna.
Hand Topology: Looks at the size and width of an	KRYPTOKNIGHT	 Smarter than storage cards
individual's hand and fingers.	IBM – thus RACF	 Storage smart card holds RSA key pairs in memory
	Peer-to-peer relationship between KDC and parties	 RSA smart cards have processor that compute (sign
Single Sign On (SSO)	,	and verify RSA certificates) and create RSA key pairs
Advantage: ability to use stronger passwords, easier	SCRIPTING	
administration, less time to access resources.	scripts contain logon information that authenticates users	
Disadvantage: once a key is compromised all resources can be		
accessed.	DIRECTORY SERVICE	
Thin client is also a single sign on approach	Hierarchical naming schema	
	active directory has sophisticated security resources (aroup	
	policy user rights accounts DNS services)	

Identity management

Performs all of IAAA

Directory based

- hierarchical x500 standard protocol like LDAP for allowing subjects to interact with the directory
- Organized through name spaces (Through Distinguished names)
- Needs client software to interact
- META directory gathers information from multiple sources and stores them into once central directory and synchronizes
- VIRTUAL directory only points where the data resides

Web Access Management

- allows administrators to control what users can access when browsing enterprise assets
- mostly working as stateless HTTP, during session you are authenticated, once logged of you have to reindentify and authenticate
- Can also work as Single Sign on by use of SSL where through the use of COOKIES the authentication is being held in memory (preferably) or text file

Password Management

- Password Synchronization. Systems synchronize the passwords to multiple systems. User has one password but has to re-authenticate at every system. Danger: if one password is hacked, all resources can be accessed. Differs from legacy sign on: Users authenticates once then will gain access without reauthentication
- Self-Service password reset. Personal questions (pet's name, mother's maiden name). Often done by question, then sending mail with link so identity tied to the answer
- Assisted password reset. Help Desk authenticates you by question and answer

Account management

- life cycle management (creating, modifying and deleting accounts)
- Can be automatically or by tickets for technical administrators on request of the managers
- mainly for internal accounts

Provisioning

- user information taken from HR (authoritative source)
- Identity data put in an centralized directory (identity repository)
- manager will appoint new employees, accounts are created automatically
- user provisioning refers to creation, maintenance and deactivation of user objects and attributes on systems, directories or application in response to business processes.

Profile update

- collection of data associated with identity is called a profile
- self service is it called when a user can update his own non-sensitive data
- digital entity is made up of different attributes (like manager, sex height etc) has clearance level yyy etc
- Federation = sharing identity and authentication behind the scenes (like booking flight --> booking hotel without re authenticating) by using a federate identity so used across business boundaries

Network security

NIST 800-42 = security testing

War driving: driving a car with notebook to find open access point to a network

IDS intrusion detection system

NETWORK BASED

- Detects intrusions on the local area network behind a firewall.
- Is passive while it acquires data.
- Reviews packets and headers
- Problem with network based is that it will not detect attacks by users logged into hosts

HOST BASED

- monitoring servers through EVENT LOGS AND SYSTEM LOGS
- as good as the completeness of the host logging

Signature based method (AKA Knowledge based): compared with signature attack database (aka misuse detector) Statistical anomaly based: defines a 'normal' behavior and detects abnormal behaviors.

Response box is a part of an IDS that initiates alarm or activity

Components: Information source/sensor, centralized monitor software, data and even report analysis, database components and response to an event or intrusion

IPS Intrusion prevention system

Detect attack and PREVENT that attack being successful

Penetration testing

<u>Blue team</u> had knowledge of the organization, can be done frequent and least expensive <u>Red team</u> is external and stealth <u>White box</u> ethical hacker knows what to look for <u>Black box</u> ethical hacker not knowing what to find

4 stages: planning, discovery, attack, reporting

vulnerabilities exploited: kernel flaws, buffer overflows, symbolic links, file descriptor attacks other model: footprint network (information gathering) port scans, vulnerability mapping, exploitation, report scanning tools are used in penetration tests flaw hypotheses methodology = operation system penetration testing

Other things to know

Constrained user interfaces limit the functions that can be selected by a user

threat: something that could happen to a system, vulnerability: is a weakness or hole in the security

Race Condition: when two or more processes use the same resource and the sequence of steps within the software can be carried out in an improper order, thus like force the authorization step to take place before the authentication step. TOC/TOU Attack is an asynchronous attack when an attacker

interrupts a task and changes something to affect the result

The system key (SYSKEY) protects security information (including password information) in the Active Directory database and other Local Security Authority (LSA) secrets against offline attacks by encrypting their storage on a domain controller in a Windows server

Hardening an operation system: disable services and remove unnecessary applications

allowing downloads on a honey pot = illegal (entrapment)

Categories within a security label are used to enforce need to know

fault generation = getting the encryption key

		Natural altres	
	Network Availability	Network abuse	FRAGGLE – similar to Smult but uses UDP
		<u>Class A</u> : unauthorized access by circumventing access controls.	Countermeasures – disable broadcast at border routers; border
	Raid levels	apother user (masquerading)	routers should not accept packets that originate within network;
	RAID 0 Striped, one large disk out of several –Improved	Class B – unauthorized use of network for non business	restrict UDP traffic; employ IDS; apply appropriate patches.
	performance but no fault tolerance	properties	
	RAID 1 Mirrored drives -fault tolerance from disk errors and single	Surfing internet, porn sites, private emails	Land Attack - The attack involves sending a spoofed TCP SYN
	disk failure, expensive	Class C – Eavesdropping	packet (connection initiation) with the target host's IP address and
	RAID 2 not used commercially. Hamming Code Parity	Interception of network traffic. Tapping = physical interception like	an open port as both source and destination.
2	RAID 3 Striped on byte level with extra parity drive –Improved	clipping	The reason a LAND attack works is because it causes the
5	performance and fault tolerance, but parity drive is a single point	Passive eavesdropping: monitoring or listening to transmissions	machine to reply to itself continuously.
	of failure and write intensive.	Active eavesdropping: tampering with an transmission to create	
	RAID4 Same as Raid 3 but striped on <u>block level</u>	covert channels or actively probing the network	SYN FLOOD - TCP packets requesting a connection (SYN bit set)
	RAID 5 Striped on block level, parity distributed over all drives –	<u>Class D</u> – Denial of service or other service disruptions (see under	are sent to the target network with a specified source address. The
	requires all drives but one to be present to operate not-	network attacks)	target responde with a SVN ACK packet, but the specified source
	Swappable. Interleave parity	<u>Class E</u> – Network intrusion	target responds with a STN-ACK packet, but the spooled source
	drives but two to be present to operate bot, swappable	- Spooting: giving out incorrect information to deliberately	never replies. This can quickly overwheim a system's resources
2	RAID 7 is as raid5 but all drives act as one single virtual disk	Piggy backing: User leaves session open or intruder	while waiting for the half-open connections to time out. This
		notes credentials by looking over shoulder	causes the system to crash or otherwise become unusable.
5	0.1. striped sets in a mirrored set (minimum four disks: even	 Back-door attacks: intrusion via dial-up or external 	Counter: sync cookies/proxies, where connections are created
	number of disks)	networks	later
		Class F – Probing	
		Used to gain a road map of the network by using a sniffer. (mostly	Teardrop - The length and fragmentation offset fields of
	Convertexult Televent Systems	in promiscuous mode where all packages are intercepted in clear	sequential IP packets are modified, causing the target system to
5	Server fault Tolerant Systems	text). Manually by using tools like telnet to see what is listening on	become confused and crash.
5	Redundant servers – applies raid 1 mirroring concept to servers.	a remote sever. Automatic by software programs that do all the	
٦ C	tolerance	probing and scanning	Common Session Hijacking Attacks:
	Server clustering – group of independent servers with are		, 3
	managed as a single system. All servers are online and take part		Session hijacking (Spoofing) - IP spoofing involves altering a
5	in processing service requests. On error on a server only	Network attacks – Denial of Service	TCP packet so that it appears to be coming from a known trusted
	performance is affected.AKA server farm	Used to overwhelm a targets resources	source thus giving the attacker access to the network
		- Filling up hard drive by using huge email attachments or	Source, thus giving the attacker access to the network.
	Single point of failures	tile transfers	TCP sequence number attack intruder tricks torget to believe it
	Cabling	- Sends messages to reset targets nost subnets masks	is appreciate a trusted best and then bijed the persion by
	Coaxial many workstations, length.	- Osing up an system resources	is connected to a trusted nost and then nijacks the session by
	Twisted pair to long. Cat 5 better than cat3 for interference	DOS - performed by sending malformed packets to a system: can	predicting the targets choice of an initial TCP sequence number
	Fiber optics immune to EMI, can be broken and high-	interrunt service or completely deny legitimate users of system	
1	cost/expertise		
	I opology failures	DDOS botnot zambio maggive dag ottook using multiple	
	Enternet inisted pair more resistant than coastal	- bouner, zomble, massive dos attack using multiple	
	that's is set to wrong speed or error can take all network down	computers	
	Fiber Distributed Data Interface form of token ring that has second		
2	ring that activates on error	SMURF – ICMP requires three players (attacker, victim and	
	Leased lines use multiple lines and/or multiple vendors	amplifying network); attacker spoofs packet header to make it	
	Frame Relay WAN over a public switched network. High Fault	appear that it originated on the victim system with amplifying	
5	tolerance by relaying fault segments to working.	network broadcasting the message.	
		Countermeasures – disable broadcast at border routers; border	
		routers should not accept packets that originate within network;	
		restrict ICMP traffic (Hint IC = Its Smurf though spelled wrong)	

Network layers OSI MODEL	Network layers TCP/IP Model	
(later succeeded by TCP/IP)	Developed by Department of Defense in the 1970s to support the	Telnet terminal emulation enables user to access resources on
HINT: All People Seems to Need Data Processing	construction of the internet	another machine. Port 23
It encapsulates data when going through the layers	HINT: AHIN	File Transfer Protocol FTP for file transfers. Cannot execute
	Application – layer 4 (Application/Presentation/Session)	remote files as programs. Authentication. Port 20 and 21
Application – layer 7 – C, AU, I, NR	Applications and processes that uses the network	Trivial File Transfer Protocol TFTP stripped down, can only
FTP, SMB, TELNET, TFTP, SMTP, HTTP, NNTP, CDP,		send/receive but not browse directories. No authentication thus
GOPHER, SNMP, NDS, AFP, SAP, NCP, SET. Technology:	Host-to-Host – Layer 3 (Transport)	insecure. Port 69
Gateways, User data	End-to-end data delivery	Network File System NFS protocol that supports file sharing
Presentation – laver 6 – C. AU. Encryption	Protocols: TCP and UDP	between two different file systems
Translations like EBCDIC/ANSI: compression/decompression and		Simple Mail Transfer protocol SMTP email queuing. Port 25
encryption/decryption. Standards like JPEG. TIFF. MID.	Internet – Layer 2 (corresponds to OSI network layer)	Line printer daemon LPD for printing and spooling
Technology: Gateway, Messages	Defines the IP datagram and handles routing of data across	X Windows graphical user interface
	networks	Simple Networking Management Protocol SNMP collection of
Session -laver 5 None	Protocols: IP, ARP, RARP, ICMP	network information by polling the devices from a management
Inter-host communication, simplex, half duplex, full duplex.		station. Sends out alerts -called traps- to an database called
Protocols as NSF, SQL, RADIUS, and RPC. Technology	Network access – Layer 1 (Data link. Physical)	Management Information Bases (MIBs)
Gateway	Routines for accessing physical networks and the electrical	Bootstrap Protocol BootP when wireless workstation is on-lined
	connection	it sends out a BootP request with its MAC address to get an IP
Transport – laver 4 – C. All I		address and the file from which it should boot. Replaced by DHCP
End-to-end data transfer services and reliability Technology:	Network Protocols	DHCP: Dynamic Host Configuration Protocol
Gateways Datagrams	Transmission control protocol TCP – reliable sequences and	,
Protocole: TCP LIDP SSL SSH-2 SPX NetBios ATP	works with acknowledgements. Provides a manageable data flow	Security Enhancement Protocols
	to avoid congestions overleading and data loss. (like baying a	TELNET: Remote terminal access and Secure Telnet
Network – laver 3 – C. All I	telephone conversation with someone). Connection Oriented	REMOTE PROCEDURE CALL: Secure remote procedure call
<u>Network</u> - layer 5 - C, AO, I Bath selection and logical addressing. Technology: Virtual circuite	Liser datagram protocol LIDP upreliable scaled down version	(SRA)
(ATM) routors Backets	of TCP, no error correction, no convencing Loce overhead (like	
(ATM), Toulers. Factors Message routing, error detection and control of pode data are	conding a letter to compone). Connectionloss	Security Featracia
managed ID IDSEC ICMD BCD OSDE DID BOOTD DHCD	Internet protocol IP all hosts have an IP address. Each data	At application layer of OSI:
TIP DDP X 25 and IGMP	nachet has an ID address of sonder and resident. Pouting in	At application layer of Col.
	patwork in based upon these addresses. Capaidared upreliable	and transactions. Quartelean by SSI
Data Link Joyar 2 C	detegram convice because there's no guarantee that the packet	Caru transactions. Overlaken by SSL
<u>Data Link</u> – layer 2 - C This lower deals with addressing physical bardware	will be delivered, not even that its delivered only once and no	Secure HITF S-HITF) encrypting HITF documents. Also
This layer deals with addressing physical hardware.	will be derivered, not even that its derivered only once and no	At Transport Joyer of OSI:
destinction based and source address. First detection via	22 hite lang. IDu6 is 129 hite lang	At Transport layer of USI:
	Address resolution protocol APP: Load to motoh on ID address	and integrity
Checksums.	Address resolution protocol ARP: Used to match an IP address	and integrity.
LLC. the Logical Link Control Sub layer. Flow control and error	to a hardware mac address. ARP sends out broadcast to a	uses RSA certificates for authentication and tiple DES for
MAC: the Madia Assess Control lover. Dhysical addressing	network hode to reply with its hardware address. It stores the	encryption
MAC: the Media Access Control layer. Physical addressing.	ADD results and address in a dynamic table for the duration of the session, so	Secure Socket Layer (SSL) encryption technology to provide
	ARP requests are only send the first time	secure transactions like credit card numbers exchange. I wo
PIOLOCOIS: LZF, PPTP, LZTP, PPP, SLIP, AKP, KAKP, SLARP,	Reverse address resolution protocol RARP: when a hardware	ayered: SSL record protocol and nandsnake protocol. Same as
A ARRAY DINAP, BAP, CHAP, LCP, LZS, MLP, FRAME REIAY, ANNEX	address is known but the IP address has to be found. (like an	Son it uses symmetric encryption for private connections and
A, ANNEX D, HDLU, BPDU, LAPD, ISL, MAU, Ethernet, Token	diskiess machine)	asymmetric or public key cryptography for peer authentication.
אוng, דעטי	Internet control message protocol ICMP: sends messages	Also uses message authentication code for integrity checking.
Bluesiast Jacob 0	between network nodes regarding the health of the network. Also	Simple Key Management for Internet Protocols (SKIP)
Physical – layer 1 - C	Informs about rerouting incase of errors. Utility PING uses ICMP	provides high availability in encrypted sessions to protect against
Coverts bits into voltages or light impulses. Hardware and	messages to check physical connectivity of the network machines	crashes. Exchanges keys on a session by session basis.
software drivers are on this level. It sends and receives bits.		
Physical topologies: BUS, MESH, STAR, TREE, RING		

Telecommunications and Network Security

I

Domain 3

Firewalls TYPES

Packet filtering firewall AKA screening router

Examines source/destination address, protocol and ports of the incoming package. Based on ACL's access can be denied or accepted. Is considered a **first generation** of firewall and operates at Network or Transport layer of OSI

Application level firewall AKA proxy server

While transferring data stream to another network, it masks the data origin. **Second generation** firewall operating at Application layer of OSI

Stateful inspection firewall

All packages are inspected at the Networking layer so it's faster. By examining the state and context of the data packages it helps to track connectionless protocols like UDP and RPC. **Third generation** firewall. Analyzed at all OSI Layers.

Dynamic Packet Filtering firewall

Enables modification of the firewall rule. It provides limited support for UDP by remembering UDP packages across the network. Fourth generation.

Kernel Proxy Firewalll / Application level Firewall

Runs in windows NT, modular, kernel based, multiplayer session evaluation. Uses dynamic TCP/IP stacks to inspect network packages and enforce security policies. **Fifth generation**

Firewall architecture

Packet filtering routers

Sits between trusted and un-trusted network, sometimes used as boundary router. Uses ACL's. Protects against standard generic external attacks. Has no user authentication, has minimal auditing.

Screened-Host firewall system

Has both a packet-filter router and a bastion host. Provides both network layer (package filtering) as application layer (proxy) server.

Dual homed host firewall

Consists of a host with 2 NIC's. One connected to trusted, one to un-trusted. Can thus be used as translator between 2 network types like Ethernet/token ring. Internal routing capabilities must not be enabled to make it impossible to circumvent inspection of data.

Screened-subnet firewalls

Has also defined a De-Militarized Zone (DMZ) : a small network between trusted an untrusted.

Socks firewall

Every workstation gets some Socks software to reduce overhead

Virtual Private Networks VPN

A VPN is created by dynamically building a secure communications link between two nodes using a secret encapsulation method via network address translation (NAT) where internal IP addresses are translated to external IP addresses.

VPN Protocols

Hint: TP at end for Tunneling Protocols Point to Point tunneling protocol (PPTP)

- Works at data link layer of OSI
- Only one single point-to-point connection per session
- Point To Point protocol (PPP) for authentication and tunneling
- Dial-up network use

Layer 2 tunneling protocol (L2TP)

- Also in data-link layer of OSI
- Single point-to-point connection per session
- Dial-up network use
- Port 115

IPSEC

- Operates at Network Layer of OSI
- Enables multiple and simultaneous tunnels
- Encrypt and authenticate
- Build into IPv6
- Network-to-network use

VPN Devices

Is hard- or software to create secure tunnels

IP-sec compatible

- Encryption via Tunnel mode (entire data package encrypted) or Transport mode (only datagram encrypted)
 - Only works with IP at Network layer of OSI

NON IP-sec compatible

Socks-based proxy servers Used to reach the internal network from the outside. Also contains strong encryption and authentication methods

PTP used in windows machines. Multiprotocol, uses PAP or CHAP

Dial-up VPN's remote access servers using PPTP commonly used by ISP's

Secure Shell SSH2 not strictly a VPN product but opens a secure encrypted shell session from the internet through a firewall to a SSH server

DATA NETWORK TYPES

Local Area Network LAN

Limited geographically to e.g. a building. Devices are sharing resources like printers, email and files. Connected through copper wire or fiber optics.

CAN: campus area network, multiple building connected to fast backbone on a campus

MAN: metropolitan network extends over cities

Wide Area network WAN

Connects LANS over a large geographical area

Internet intranet and extranet

Internet is global, intranet local for use within companies and extranet can be used e.g. by your customers and clients but is not public.

DATA NETWORK SIGNALS

Analog signal Infinite wave form, continuous signal, varied by amplification

Digital signal Saw-tooth form, pulses, on-off only Asynchronous sends bits of data sequentially. Same speed on both sides. Modems and dial-up remote access systems Synchronous very high speed governed by electronic clock timing signals

LAN Cables

Twisted pair

Shielded (STP) or unshielded (UTP) Cat 3=10BaseT, Cat5=100BaseT

Coaxial

More EMI resistant. Baseband: only one single channel, Broadband: multiple signal types like data, video, audio **Fiber Optic**

Most expensive, but hard to tap and resistant to EMI

LAN Transmission Protocols

Carrier Sense Multiple Access CSMA for Ethernet. Workstations send out packet. If it doesn't get an acknowledgement it resends CSMA with Collision Avoidance workstations are attached by 2 coax cables. In one direction only. Wireless 802.11 CSMA with Collision Detection Only one host can send at the time, using jamming signals for the rest. Polling Host can only transmit when he polls a secondary to see if its free Token-passing Used in token rings Hosts can only transit when they receive a clear to send token.

LAN Transmission Methods

<u>Unicast</u> Packet is send from single source to single destination <u>Multicast</u> source packet is copied and send to multiple destinations <u>Broadcast</u> source packet is copied and send to all nodes

LAN Topologies

BUS all transmissions have to travel the full length of the cable <u>RING</u> Workstations are connected to form a closed loop <u>STAR</u> nodes are connected to a central LAN device <u>TREE</u> bus type with multiple branches <u>MESH</u> all nodes interconnected

LAN Media Access

Ethernet IEEE 802.3 using CSMA with an BUS-topology Thinnet: 10base2 with coax cables up to 185 meters Thicknet: 10Base5, coax up to 500 meters UTP: 10BaseT=10MBps 100baseT=Fast Ethernet =100MBps 1000BaseT=Gigabit Ethernet=1GBps Ethernet networks were originally designed to work with more

sporadic traffic than token ring networks

ARCnet uses token -passing in a star technology on coax

<u>Token Ring IEEE 802.5</u> IBM created. All end stations are connected to a MAU Multi Access Unit. CAU: Controlled Access Units – for filtering allowed MAC addresses.

Fiber Distributed Data Interface (FDDI) token-passing dual token ring with fiber optic. Long distances, minimal EMI interference permits several tokens at the time active

LAN Devices

 Repeaters
 amplify data signals to extend range (physical)

 HUBS
 connect multiple LAN devices into a concentrator. Is actually a

 multi-port repeater (physical)
 Ir

 Bridges
 Forwards data to all other network segments if it's not on the

 local segment. Operates at level 2 (thus no IP-addressing here)
 Switches

 Switches
 Will only send data to the specific destination address. It's

 actually a multi-port bridge. (Data link)
 P

 Routers
 opens up data packet, reads hardware or network address

 and then forwards it to the correct network
 Gateway

 Software that acts as access point to another network or
 M

 device that translates between different protocols
 Vi

 LAN extenders
 remote access, multi layer switch that connects

WAN Protocols

Private Circuit technologies

Dedicated line reserved communication, always available **Leased line** can be reserved for communications. Type of dedicated line.

- T1 1,5 Mbps through telephone line
- T3 44,7 Mbps through telephone line
- E1 European 2048 Mbps digital transmission

Serial Line IP (SLIP) TCP/IP over slow interfaces to communicate with external hosts (Berkley UNIX, windows NT RAS)

Point to Point protocol (PPP) improvement on slip, adds login, password and error (by CHAP and PAP) and error correction. Data link.

Integrated Services Digital Network (ISDN) combination of digital telephony and data transports. Overtaken by xDSL xDSL Digital subscriber Line uses telephone to transport high bandwidth data to remote subscribers

- **ADSL** Asymmetric. More downstream bandwidth up to 18,000 feet over single copper cable pair
- **SDSL** Symmetric up to 10,000 feet over single copper cable pair
- HDSL High Rate T1 speed over two copper cable pairs up to 12,000 feet
- VDSL Very High speed 13-52MBps down, 1,5-2,3
 Mbps upstream over a single copper pair over 1,00
 to 4500 feet

Circuit-switched networks

There must be a dedicated physical circuit path exist during transmission. The right choice for networks that have to communicate constantly. Typically for a telephone company network Voice oriented. Sensitive to loss of connection

Message switching networks

Involves the transmission of messages from node-to-node. Messages are stored on the network until a forwarding path is available.

Packet-switched networks (PSN or PSDN)

Nodes share bandwidth with each other by sending small data units called packets. Packets will be send to the other network and reassembled. Data oriented. Sensitive to loss of data. More cost effective than circuit switching because it creates virtual circuits only when they are needed.

Packet switching technologies

X25 defines point-to-point communication between Data terminal Equipment (DTE) and Data Circuit Terminating Equipment (DCE) Link Access Procedure-Balanced (LAPB) created for use with X25, LAPB defines frame types and is capable of retransmitting, exchanging and acknowledging frames as detecting out-of-sequence or missing frames

Frame Relay High performance WAN protocol designed for use across ISDN interfaces. Is fast but has no error correction

<u>Switched Multimegabit DATA Service (SMDS)</u> high speed communication over public switches networks for exchanging 'bursts of data' between enterprises

Asynchronous Transfer mode (ATM) very high bandwidth. It uses 53-byte fixed size cells instead of frames like Ethernet. It can allocate bandwidth up on demand making it a solution for Busty applications. Requires fiber optics.

Voice over IP (VOIP) combines many types of data into a single IP packet. Cost, interoperability and performance wise it's a major benefit.

Other important WLAN protocols

Synchronous Data Link Control (SDLC) created by IBM for mainframes to connect to their remote offices. Uses a polling media access method. Works with dedicated leased lines permanent up.

Data link layer of OSI model

High-level Data Link Control (HDLC) extension to SDLC also for mainframes. Uses data encapsulation on synchronous serial links using frame characters and checksums. Also data link layer High Speed Serial Interface (HSSI) Defines electrical and physical interfaces to use for DTE/DCE communications. Physical layer of OSI

WLAN devices

<u>Multiplexors</u> device that enables more than one signal to be send out of one physical circuit

<u>WAN switches</u> multi-port networking devices that are used in carrier networks. Connect private data over public data by using digital signals. Data link layer.

<u>Access servers</u> server that provides dial-in and dial-out connections to the network

Modems transmits data over telephone lines

<u>Channel Service Unit (CSU)/Data service unit (DSU)</u> digital interface device used to terminate the physical interface on a DTE device. They connect to the closest telephone company switch in a central office (CO)

Remote Access Technologies

Asynchronous Dial-Up Access This is how everyone connects to the internet. Using a public switched telephone network to access an ISP

Integrated Serviced Digital Network (ISDN) communication protocol that permits telephone line to carry data, voice and other source traffic. Two types: BRI Basic rate interface and Primary Rate Interface (PRI)

<u>xDSL</u> uses regular telephone lines for high speed digital access <u>Cable Modems</u> Via single shared coaxial cable, insecure because of not being filtered or firewalled

Remote Access Security Technologies

<u>Restricted Address</u> incoming calls are only allowed from specific addresses on an approval list. This authenticates the node, not the user!

<u>Callback</u> User initiates a connection, supplies identifying code, and then the system will call back a predetermined telephone number. Also less useful for travelling users <u>Caller ID</u> checks incoming telephone number against an approval

list and then uses Callback. Less useful for travelling users.

Remote Node Security Protocols Password Authenticate Protocol PAP

Provides identification and authentication of the user using static replayable passwords. No encryption of user-id or password during communication

Challenge Handshake Authenticate Protocol (CHAP)

non-replayable challenge/response dialog

Remote Access Authentication Systems

Terminal Access Controller Access Control System TACACS User passwords are administrated in a central database instead of individual routers. A network device prompts user for a username

and static password then the device queries a TACACS server to verify the password. TACACSs **does not** support prompting for password change or use of dynamic password tokens. Port 49 **TACACS+** Enhanced version with use of two factor

authentication, ability to change user password, ability of security tokens to be resynchronized and better audit trails and session accounting

Remote Authentication Dial-In User Service RADIUS Often

uses as stepping stone to the more robust TACACS+. Clients sends their authentication request to a central radius server that contains all of the user authentication and network ACL's RADIUS does not provide two way authentication, therefore it's not used for router-to-router authentication. Port 1812. Contains dynamic password and network service access information (Network ACLs)

Things to know

TCPIP Classes

Class A network number values begin at 1 and end at 127 Class B network number values begin at 128 and end at 191 Class C network number values begin at 192 and end at 223

ISDN

BRI B-channel 64Kbps, D-channel 16Kbps PRI B- and D-channels are 64Kbps

80211 has CSMA/CA as protocol. Can use DSSS and FHSS (ss stands for spread spectrum) 802.11b uses only DSSS

Before a computer can communicate with the internet, it needs an IP-address, a default gateway and a subnet mask

To connect multiple LAN segments you can use Bridges, Switches and Routers

Fast Ethernet 100Base-TX has as characteristics: 100Mbps data transmission, 1 pairs Cat5 UTP and max segment of 100 meters (328 feet)

Unsubnetted netmask is shown as /24

Other word for DMZ is screened subnet

FTP, RLOGIN and TELNET never uses UDP but TCP

Attenuation is decrease in amplitude as a signal propagates along a transmission medium

SSL session key length is from 40bit to 256 bit

The bridge connects multiple networks at the data link layer, while router connects multiple networks at the network layer.

Data backups addresses availability, integrity and recovery but not confidentiality

IP headers contain 32-bit addresses (in IPv4) and 128 in IPv6. In an Ethernet local area network, however, addresses for attached devices are 48 bits long.

Wireless

802.11: 1 or 2 mbps, 2.4Ghz, FHSS or DSSS

802.11b: 11 mbps, only DSSS

802.11a: 54 mbps, 5 GHz, Orthogonal Frequency Division

802.11g: 20-54mbps, 2.4GHz

802.11e: QoS

802.16: IEEE 802 Broadband Wireless Access (802 WBA)

802.11i: AES, CCMP, 802.1X authentication.

802.11n: 100mbps, 2.4GHz

History

Hieroglyphics - sacred carvings

<u>Scytale</u>: wound papyrus around a wooden rod to see message <u>Substitution character</u>: shifting 3 character (C3) for example in the one (mono-alphabet) alphabet system <u>Cipher disks</u>: 2 rotating disks with an alphabet around it <u>Jefferson disks</u>: 26 disks that cipher text using a alignment bar <u>Unix uses rot 13</u>, rotate 13 places in the alphabet <u>Hagelin machine (M-209)</u> mechanical cryptographic machine) Enigma: poly-alphabetic substitution cipher machine

Techniques

<u>Substitution</u>: like shifting and rotating alphabets, can be broken by statistical looking at repeating characters or repeats <u>Transposition</u> (permutation): scrambled orders for example vertical instead of horizontal

<u>Vernam cipher</u> (one time pad): key of a random set of nonrepeating characters

Information Theory - Claude Elmwood Shannon

<u>Transposition</u> Permutation is used, meaning that letters are scrambled. The key determines the positions that the characters are moved to.

Asymmetric key AKA Public Key Encryption

- Sender and receiver have public and private keys.
- Public to encrypt a message, private to decrypt
- Slower than symmetric, secret key (100 to 1000)

Public Key Algorithms

- RSA (Rivest, Shamir and Adleman) works with one way math with large prime numbers (aka trap door functions). Can be used for encryption, key exchange and digital signatures)
- Diffie Hellman Key exchange, about exchanging secret keys over an insecure medium without exposing the keys
- el Gamal, works with discrete logarithms, based on Diffie Hellmann
- **DSA Digital Signature Algorithm**, the US government equivalent of the RSA algorithm
- ECC Elliptic Curve Cryptosystem mathematical properties of elliptic curves, IT REQUERES FEWER RESOURCES THAN RSA. Used in low power systems (mobile phones etc)

Digital signatures

- no modifications allowed
 - identity can be derived

works with a one-way hash (message digest), like SHA-1 (512 bit blocks) or MD5 (128 bits digest) or HMAC that uses a key

Symmetric key AKA private key or same key

encrypt.

- Both the receiver and the sender share a common secret key
- Larger key size is safer > 128
- Can be time-stamped (to counter replay attacks)
- Does not provide mechanisms for authentication and non-repudiation

DES (data Encryption Standard) comes from IBM

- DEA Data Encryption Algorithm x3.92, using 64 block size and 56bit key with 8bits parity
- <u>16-rounds</u> of substitution and transposition cryptosystem
- Adds confusion(conceals statistical connect between cipher text and plaintext) and Diffusion (spread the influence of plaintext characters over many cipher text characters by means of transposition like HIDE→ IHED)
- Triple des = three times encrypted DES, preferably with 3 different keys = DES-EE3. Actual key length = 168 bits. Uses 48 rounds of computations (3x16)
- Replaced by AES Advanced Encryption Standard 4 modes
 - **CBC Cipher Block Chaining** blocks of 64 bits with 64bits initialization vector. Errors will propagate **ECB Electronic Code Book** - right block/left block pairing 1-1. Replication occurs.

Cipher Feedback CFB - stream cipher where the cipher text is used as feedback into key generation. errors will propagate

Output Feedback OFB - stream cipher that generates the key but XOR-ing the plaintext with a key stream. No errors will propagate

AES Advanced Encryption Standard

Rijndael Block Cipher Algorithm

for speed, simplicity and resistance against known attacks. Variable block length and variable key lengths (128,192 and 256 bits)

Not selected for AES were:

RC5 variable algorithm up to 2048 bits key size

- IDEA International Data Encryption Algorithm 64 bit plaintext and 128 key length with confusion
 - and diffusion
 - used in PGP software
 - patented requires licenses fees
- Two fish key lengths 256 bits blocks of 128 in 16rounds Blowfish by Bruce Schneider key lengths up to 448 bits Serpent 32 rounds, 1024 lookups

Hybrid systems

- uses both asymmetrical and symmetrical encryption
 asymmetrical for key exchange
 - o symmetrical for the bulk thus it is fast
- example: SSL, PGP, IPSEC S/MIME

PKI

X.509 standard = PKI

Integrity (hash code and message digest), access control, confidentiality (by encryption), authentication (digital certificates) and non-repudiation (digital signatures)

issuer signs a certificate

If you only want to check if a mail is not altered: use digital signature!

trust anchor = public key that has been verified and that's trusted

escrowed encryption standard

- legal monitoring of encrypted transmissions
- divide key into 2 parts, store separately with two trusted organizations
- part of hardware: US Government <u>Clipper Chip</u> with <u>Skipjack Secret Key algorithm</u>, but its 80-bits and weak
- Fair Cryptosystems , each portion of a distributed private key can be verified as correct

email security

<u>S/Mime</u> Confidentiality (encryption) Integrity (using PKCS X.509 PKI) and non-rep through signed message digests

<u>PEM Privacy Enhanced Email</u> Encryption (AES) PKI X.509 and RSA.

Message Security protocol Military X.400. Sign, Encrypt, Hash

<u>Pretty Good Privacy</u>, uses IDEA and RSA instead of an CA they use <u>Web of Trust</u> between the people using it

Domain 4 - Cryptography

Internet Security	Definitions	Things to know
Message Authentication Code MAC or Financial Institution	Purpose: protect transmitted information from being read and	skip is a distribution protocol
Message Authentication Standard FIMAS	understood expect the intended recipient	
Macs checks value like CRC		RC4 is a stream cipher
	Block Cipher: segregating plaintext into blocks and applying	rc5 and rc6 are block cipher
SET Secure Electronic Transaction	identical encryption algorithm and key	
Uses DES for encrypting payment information for credit card	Cipher: cryptographically transformation that operates on	FIPS 140 hardware and software requirements
companies. Covers end to end transactions with digital signatures	characters or bits	
and digital certificates	Cipher text or Cryptogram: unintelligible message	Hash algorithms are also called Message Digests.
	Clustering: situation wherein plain text messages generates	
<u>SSL / TLS</u>	identical cipher text messages using the same algorithm but with	Most used are MD5 (message Digest 128 bits) and SHA1
Netscape!	different crypto-variables or keys	(signature hashing algorithm 160 bits)
Operates at the TRANSPORT layer	Codes: cryptographic transformation that operates at the level of	
des, idea, 3des and md5 hash	words or phrases	
x.509 PKI certificates	Cryptanalysis: breaking the cipher text,	CRL's of a PKI environment holds serial numbers
does not offer end to end transactions	Cryptographic Algorithm: Step by step procedure to encipher	
based on sessions	plaintext and decipher cipher text	SHA1 was designed by NIST and NSA to be used in digital
40 or 128 bits	Cryptography: the art and science of hiding the meaning of	signatures
	communications from unintended recipients. (Greek:	
HTTPS running http over SSL, encrypts message and connection	kryptos=hidden, graphein=to write)	A root Certificate Authority (CA) must certify its own public key
	Cryptology: cryptography + cryptanalysis	pair
<u>SHTTP</u> protects only individual message between computers	Cryptosystem: set of transformations from a message space to	
	cipher space	cross certification does not check authenticity off the certificates in
secure Shell SSH-2 remote access to network using encrypted	Decipher: To make the message readable, undo encipherment	the certificates path
tunnels	process	
	Encipher: make message unintelligible	Traffic analysis: inference of information from analysis of traffic
WAP	End-to-end encryption: Encrypted information that is sent from	
class1: anonymous authentication	point of origin to destination. In symmetric encryption this means	Traffic padding: generation of spurious data units
class2: server authentication	both having the same identical key for the session	
class3: two way client server authentication	Exclusive OR: Boolean operation that performs binary addition	Collision: Same message digest as a result of hashing.
	Key or Crypto variable: Information or sequence that controls	
WEP: initialization vector, RC4 and symmetric = old do not use	the enciphering and deciphering of messages	Cryptographic Attacks:
	Link encryption: stacked encryption using different keys to	
IOTP Internet Open trading Protocol	encrypt each time	Ciphertext Only: attacker sees only the ciphertext
user chooses payment method and thus encryption	One Time Pad: encipher each character with its own unique key	
	that is used only once	Known Plaintext: attacker knowns both cipher and plaintext
MONDEX cash smart card application	Plaintext: message in clear text readable form	
	Steganography: secret communications where the existence of a	Chosen Plaintext: offline attack (attacker prepares list of
IPSEC	message is hidden (inside images for example)	plaintexts) online attack (attacker chooses the plaintext based on
2 protocols: AH Authentication header and ESP Encapsulated	Work Function (factor): the difficulty of obtaining the clear text	the ciphertext already received)
Security Payload	form the cipher text as measured by cost/time	
works with Security Associations (SA's)		Chosen ciphertext: attacker chooses both the plaintext values and
works with IKE protocols IKE IS FOR MANAGING SECURITY		the ciphertext values
ASSOCIATIONS	3 states of information	
2 modes:	data at rest (storage)	Birthday Attack: Collisions appear much fasters.
transport, data is encrypted header is not	data in transit (the network)	
tunneled: new uses rc6; IP header is added, old IP header and	data being processed (must be decrypted)	
data is encrypted	cipher types: block (padding to blocks of fixed size) like DES	
	3DES AES or stream (bit/byte one by one no padding) like RC4	
	Chameleon, leviathan, Sober	

	Computer Architecture	Protection mechanisms	Recovery procedures
	 Primary Storage is a temporary storage area for data entering and leaving the CPU Random Access Memory (RAM) is a temporary holding place for data used by the operating systems. It is volatile; meaning if it is turned off the data will be lost. Two types of RAM are dynamic and static. Dynamic RAM needs to be refreshed from time to time or the data will be lost. Static RAM does not need to be refreshed. Read-Only Memory (ROM) is non-volatile, which means when a computer is turned off the data is not lost; for the most part ROM cannot be altered. ROM is sometimes referred to as firmware. Erasable and Programmable Read-Only Memory (EPROM) is non-volatile like ROM, however EPROM can be altered. Process states: Stopped, waiting, running, ready Multitasking: execute more than one task at the same time 	 Protection domain Execution and memory space assigned to each process TRUSTED COMPUTER BASE Combination of protection systems within a computer system, which include the hardware, software and firmware that are trusted to enforce the security policy. Security Kernel is hardware, software, firmware, elements of TCB that implement the reference monitor concept — must be isolated from reference monitor (reference monitor: isolation, completeness and verifiability, that compares the security labels of subjects and objects) 	Recovery procedures: system should restart in secure mode Startup should occur in maintenance mode that permits access only by privileged users from privileged terminals Fault-tolerant continues to function despite failure Fail safe system , program execution is terminated and system protected from compromise when hardware or software failure occurs Fail soft or resilient system , selected, non-critical processing is terminated when failure occurs Failover , switches to hot backup.
	Multiprocessing more than one CPU is involved.	Protection rings (MIT's MULTICS design)	Assurance
d	simultaneously	manages the hardware (for example, processor cycles and	Degree of confidence in satisfaction of security requirements
5	Single state machine operates in the security environment at the	memory) and supplies fundamental services that the hardware	Evaluation criteria
ררמז כ	highest level of classification of the information within the computer. In other words, all users on that system must have clearance to access the info on that system. Multi-state machine can offer several security levels without risk of compromising the system's integrity.	does not provide. Ring 1 - Remaining parts of the operating system Ring 2 - I/O drivers and utilities Ring 3 - Applications and programs	Trusted Computer System Evaluation Criteria TCSEC: (Orange book) From the U.S. DoD, it evaluates operating systems, application and systems. It doesn't touch the network part. It only addresses confidentiality!
D - Decui ity Ai mine	CICS complex instructions. Many operations per instruction. Less number of fetches RISC reduced instructions. Simpler operations per instruction. More fetches. Software 1 GL: machine language (used directly by a computer) 2GL: assembler 3GL: FORTRAN. basic pl/1 and C++ 4GL: Natural / focus and SQL 5GL: Prolog, lisp artificial intelligence languages based on logic Certification and accreditation Certification is evaluation of security features and safeguards if it meets requirements DITSCAP US defense and government certification Definition (Phase 1), Verification (Phase 2), Validation (Phase 3), Poet Accreditation (Phase 4)	Security Modes (used in MAC) Dedicated security mode : - All users can access all data. - Clearance for all information. - Need to know for ALL data system high security mode: - - All users can access some data, based on need to know - Clearance for all information - Need to know for SOME data compartmented security mode: - - All users can access some data, based on their need to know and approval. - Clearance for all information they access - Need to know for SOME data - Clearance for all information they access - Need to know for SOME data - Use of information labels Multi level: - - All users can access some data, based on their need to know, approval and clearance. - Clearance for all information they access	 D minimal protection, any systems that fails higher levels C1 <u>Discretionary protection</u> (identification, authentication, resource protection). C2 - <u>AND Controlled access</u> protection (object reuse, protect audit trail). B1 <u>Mandatory protection</u> (security labels) based on Bell-LaPadula security model. <u>Labeled security</u> (process isolation, devices labels). B2 <u>AND Structured protection</u> (trusted path, <u>covert channel analysis</u>). Separate operator/admin roles. Configration management B3 <u>AND security domain</u> (trusted recovery, Monitor event and notification). A1 - verified design A - verified protection
	Post Accreditation (Phase 4) AND NIACAP National security certification Keyword: lifecycle Offers: Site, Type and System accreditation Accreditation is the formally acceptance of outcome of evaluation by management	Clearance for all information they access Need to know for SOME data Others: <u>controlled</u> type of multilevel security where a limited amount of trust is placed in the system's hardware/software along with classification <u>limited access:</u> minimum user clearance is not cleared and the maximum data classification is unclassified but sensitive	 System Integrity Covert Channel analysis Trusted Facility Management Trusted recovery

Rainbow series:

Red = trusted network, Orange = TCSEC evaluation Brown =trusted facilities management, Tan=audit, Aqua=glossary. Green = password management

Information Technology Security Evaluation Criteria

ITSEC: it is used in Europe only, not USA. Addresses CIA. Unlike TCSEC it evaluates functionality and assurance <u>separately</u>. Assurance from E0 to E6 (highest) and F1 to F10 (highest). Therefore a system can provide low assurance and high functionality or vice-versa.

Common Criteria ISO 15408

Defines a **protection profile** that specifies the security requirements and protections of a product that is to be evaluated. Organized around TCB entities. Evaluation Assurance Levels (EAL)

•EAL0 -Inadequate assurance

- •EAL1 -Functionally tested
- •EAL2 –Structurally tested
- •EAL3 –Methodically tested and checked
- •EAL4 –Methodically designed, tested and reviewed

•EAL5 -Semi formally designed and tested

- •EAL6 –Semi formally verified design and tested
- •EAL7 –Formally verified design and tested

Target of Evaluation (TOE): the product

Protection Profile (PP): Security requirements for a class of security devices

Security Target (ST): identifies the security properties of TOE

Security Functional Requirements (SFRs): Specific individual security functions

Models

MATRIX

Provides access rights to subjects for objects Access rights are read, write and execute Columns are ACL's Rows are capability lists Supports discretionary access control

TAKE-GRANT

- uses a direct graph to specify the rights that subjects can transfer to objects or that subjects can take from other subjects
- Uses STATES and STATE TRANSTIONS

BELL-LAPADULA

- Confidentiality model
- developed by DOD, thus classification
- Cannot read up (simple e=read security rule)
- Cannot write down (* property rule AKA CONFINEMENT PROPERTY). Exception is a trusted subject.
- Uses access matrix to specify discretionary access control
- Use need to know principle
- Strong star rule: read and write capabilities at the same level
- First mathematical model defined
- tranquility principle in Bell-LaPadula prevents security level of subjects from being changed once they are created

BIBA

- Integrity model
- Cannot read down (simple e=read integrity rule)
- cannot write up (* integrity)
- lattice based (least upper bound, greatest lower bound, flow policy)
- subject at one level of integrity cant invoke subject at a higher level of integrity

CLARK WILSON

- integrity model
- Cannot be tampered, logged, and consistency
- Enforces segregation of duty
- Requires auditing
- Commercial use
- Works with SCI Constrained Data items, data item whose integrity is to be preserved
- Access to objects only through programs

Information flow model

Each object is assigned a security class and value, and information is constrained to flow in the directions that are permitted by the security policy. Thus flow off information from one security level to another.

Covert channels

Is a way to receive information in an unauthorized manner. Information flood that is not protected by a security mechanism. 2 types

Storage covert channel: processes communicate via storage space on the system

<u>Covert timing channel:</u> one process relays to another by modulating its use of system resources. Countermeasures: eal6 systems have less than eal3 systems because covert channels are normally a flaw in design.

Non interference model

Groups of users are separated with their commands. Ensures that activities performed at a higher security level do not affect the activities at a lower security level

Brewer and Nash

The Chinese Wall model provides a dynamic access control depending on user's previous actions. This model prevents conflict of interests from members of the same organization to look at information that creates a conflict of another member of that organization. Ex. Lawyers in a law firm with client oppositional

Other things to know

Objects of sensitivity labels are: single classification and component set $% \left({{{\left[{{{\rm{s}}} \right]}}_{{\rm{s}}}}_{{\rm{s}}}} \right)$

Trusted recovery is: after failure or crash system is still secure

'dominate' in access control means access to higher or equal access class

Security perimeter = line between TCB and outside

Validating TCB = formal for system integrity

Tempest: shielding and other emanations-reducing mechanism

Categories of Controls

<u>Preventive</u> lower the amount and impact of unintended errors and prevent unauthorized intruders to access the systems <u>Detective</u> used to detect an error once it has occurred, operate after the fact. E.g. audit trail **Corrective** implemented to help mitigate the impact of a loss

e.g. restoring data Deterrent controls used to encourage compliance. e.g

Directive controls <u>Application controls</u> minimize and detect the software's operational irregulatrities.

<u>**Transaction Controls**</u> initiation to output through testing and change control.

- **Input controls** input must be properly and valid. E.g. time stamping and counting
- Processing controls transactions have to be valid and improper transactions have to be dealt with
- Output controls protecting confidentiality and verify integrity by comparing with input data
- Change controls preserve data integrity while changes are made
- **Test controls** during testing confidentiality has to be protected thus sanitized data has to be used

Administrative Management controls

<u>Separation of duties</u> assigns parts of tasks to different individuals thus no single person has total control of the system's security mechanisms

Least privilege a system's user should have the lowest level of rights and privileges necessary to perform their work and should only have them for the shortest time. Three types: Read only, Read/write and Access/change

Two-man control two persons review and approve the work of each other

Dual control two persons are needed to complete a task **Rotation of duties** limiting the amount of time a person is assigned to perform a security related task before being moved to different task to prevent fraud

<u>Mandatory vacations</u> prevent fraud and allowing investigations

<u>Need to know</u> the subject is given only the amount of information required to perform an assigned task <u>Employment screening or background checks</u>

Violation Analysis

Clipping levels must be established to be effective Clipping Level – baseline of normal activity, used to ignore normal user errors Profile Based Anomaly Detection

Looking for:

- Repetitive Mistakes
- Individuals who exceed authority
- Too many people with unrestricted access
- Patterns indication serious intrusion attempts

Trusted recovery

2.

Ensures that the security is not breached when a system crash or failure occurs. *Only required for a B3 and A1 level systems*. **Failure preparation** Backup critical information thus enabling data recovery

System recovery after a system crash

- 1. Rebooting system in single user mode or recovery console, so no user access is enabled
 - Recovering all file systems that were active during failure
- 3. Restoring missing or damaged files
- 4. Recovering the required security characteristic, such as file security labels
- 5. Checking security-critical files such as system password file

Common criteria hierarchical recovery types

- 1. **Manual** System administrator intervention is required to return the system to a secure state
- 2. **Automatic** Recovery to an secure state is automatic when resolving a single failure (though system administrators are needed to resolve additional failures)
- 3. Automatic without Undo Loss Higher level of recovery defining prevention against the undue loss of protected objects

Types of system failure

System reboot System shuts itself down in a controlled manner after detecting inconsistent data structures or runs out of resources **Emergency restart** when a system restarts after a failure happens in an uncontrolled manner. E.g. when a low privileged user tries to access restricted memory segments

System cold start when an unexpected kernel or media failure happens and the regular recovery procedure cannot recover the system in a more consistent state.

Monitoring and auditing

Companies can set predefined thresholds for the number of certain types of errors that will be allowed before the activity is considered suspicious. This baseline is referred to as <u>clipping level</u>

Audit trails

- Transaction date/time
- Who processed the transaction
- At witch terminal
- Various security events

Threats and vulnerabilities

Accidental loss occurs unintentionally

Examples: user input errors deletion errors faulty data or application programs

Inappropriate activities computer behavior that does not rise the level of criminal activity, but may y be grounds for job action or dismissal

- **Inappropriate content** using corporate property to store illegal content as porno, entertainment political data
- Waste of corporate resources using corporate resources for private use
- Sexual or Racial Harassment using computer resources
- Abuse of Privileges and Rights

Illegal Computer Operations

- Eavesdropping sniffing, dumpster diving, social engineering
- Fraud collusion, falsified transactions
- Theft information or trade secrets, physical hardware and software theft
- Sabotage Denial of Service (DoS), production delays
- External Attacks malicious cracking, scanning, war dialing

Other things to know

OPSEC process- Understanding your day-to-day operations from the viewpoint of a competitor, enemy, or hacker and then developing and applying countermeasures.

Pen-test – testing of network security as would a hacker do to find vulnerabilities. Always get management approvement firs!

Port scanner: program that attempts to determine whether any of a range of ports is open on a particular computer or device

Ring zero- inner code of the operating system. Reserved for privileged instructions by the OS itself War dialer: dials a range of phone numbers as in the movie wargames

Assurance = other word for security

Superzapping: system utility or application that bypasses all access controls and audit/logging functions to make updates to code or data

Operational assurance – Verification that a system is operating according to its security requirements

- Design & development reviews
- Formal modeling
- Security architecture
- ISO 9000 quality techniques
- Assurance degree of confidence that the implemented security measures work as intended

Piggybacking: when an unauthorized person goes through a door behind an authorized person. Supervisor mode: processes running in inner protected ring

Operational Assurance

 $\ensuremath{\textbf{Operational Assurance}}$ – focuses on basic features and architecture of a system

- System Architecture
- System Integrity
- Covert Channel Analysis
- Trusted Facility Management
- Trusted Recovery

Covert Channel Analysis

An information path that is not normally within a system and is therefore not protected by the systems' normal security mechanism. Secret ways to convey information to another program or person

- Covert Storage Channels convey information by changing stored data (B2)
- **Covert Timing Channels** convey information by altering the performance of or modifying the timing of system resources in measurable way. (**B3, A1= Storage and Timing**)

Combat Covert Channel Analysis - with noise and traffic generation

Trusted Facility Management - Required for **B2**, **B3**, and **A1** Defined as assignment of a specific individual to administer the security of a system. (Security Administrator)

- Separation of Duties
 B2 security level requires that systems must support separate operator and system administrator roles.
 B3 and A1, systems must clearly identify the functions of the security administrator to perform the security-related functions.
- Rotation of duties

Trusted Recovery - Required for B3 and A1 levels

Life Cycle Assurance

Life Cycle Assurance – controls and standards required for building and maintaining a system

- Security Testing
- Design Specification and testing
- Configuration Management
- Trusted Distribution

Configuration Change Management – Required B2, B3 and A1

- Process of tracking and approving changes
- Identify, control and audit changes
- Changes to the system must not diminish security
- Includes roll back procedures
 - Documentation updates to reflect changes
- Recommended for systems below the required B2, B3 and A1
 - Change Control Functions: Orderly manner and formalized testing Users informed of changes Analyze effects of changes Reduce negative impact of changes
- Configuration Management required for Development and Implementation stages for B2 and B3
- Configuration Management required for life cycle of system for A1

Operations Controls

Resource Protection

•

Protecting Resources from disclosure alteration or misuse Hardware – routers, firewalls, computers, printers Software – libraries, vendor software, OS software Data Resource – backup data, user data, logs

Hardware Controls

Hardware Maintenance

Requires physical and logical access by support and vendors / Supervision of vendors and maintenance, background checks Maintenance Accounts Disable maintenance accounts when not needed Rename default passwords

Diagnostic Port Control

Specific ports for maintenance Should be blocked from external access

Should be blocked from external access

- Hardware Physical Controls require locks and alarms Sensitive operator terminals
 - Sensitive operator term
 - Media storage rooms
 - Server and communications equipment
 - Modem pools and circuit rooms

Software Controls

Anti-virus Management – prevent download of viruses Software Testing – formal rigid software testing process

Software Utilities – control of powerful utilities

Safe software Storage – prevent modification of software and copies of backups

Back up Controls – test and restore backups

Privileged Entity Controls –" privileged operations functions" Extended special access to system commands Access to special parameters

Access to system control program - some only run in particular state

Media Resource Protection

<u>Media Security Controls</u> – prevent the loss of sensitive information when the media is stored outside the system

Logging – log the use of the media, provides accountability <u>Access Control</u> – physical access control <u>Proper Disposal</u> – sanitization of data – rewriting, degaussing, destruction

<u>Media Viability Controls</u> – protect during handling, shipping and storage

<u>Marking</u> – label and mark media, bar codes <u>Handling</u> – physical protection of data <u>Storage</u> – security and environmental protection from heat, humidity, liquids, dust, smoke, magnetism

Physical Protection

Protection from physical access

Hardware – routers, firewalls, computers, printers Software – libraries, vendor software, OS software

<u>Physical piggybacking</u> – following an authorized person through a door

Penetration Testing

Testing a networks defenses by using the same techniques as external intruders

- Scanning and Probing port scanners
- Demon Dialing war dialing for modems
- Sniffing capture data packets
- Dumpster Diving searching paper disposal areas
- Social Engineering most common, get information by asking

Problem Management

Goals of problem management:

- Reduce failures to a manageable level
- Prevent occurrence of a problem
- Mitigate the impact of problems

Potential Problems:

- Performance and availability of computing resources
- The system and networking infrastructure
 - Procedures and transactions
 - Safety and security of personnel

Abnormal Events - that can be discovered by an audit

- Degraded resource availability
- Deviations from the standard transaction procedures
- Unexplained occurrences in a processing chain

Objective of problem management is resolution of the problem

د ۱	Sof
iin 7 – Applications and Systems development	Soft MOIL Simp This be co Stage Can step. Prob Syste Prob Spira Angu Edf I Deve acce Infel Testi Natio Shou (live UNIT
Domaiı	UNIT deve Main Requ and i

Software Life Cycle Development

MODELS Simplicatio

implistic model

his model was simplistic in that it assumed that each step could e completed and finalized without any effect from the later ages that may require rework.

Naterfall model

can be managed if developers are limited going back only one tep. If rework may be done at any stage it's not manageable. Problem: it assumes that a phase or stage ends at a specific time. System Requirements-> Software Requirements -> Analysis -> Program Design -> Coding -> Testing -> Operations & Maintenance

Vaterfall including Validation and Verification (V&V)

interpretation of the waterfall model where verification aluates the product during development against specification d validation refers to the work product satisfying the real-world auirements and concepts.

/erification=doing the job right

alidation:= doing the right job

Spiral model

- Angular = progress made Radial = cost Lower left = development plans Upper left = objectives of the pla
- Upper left = objectives of the plans, alternatives checked Upper right = assessing alternatives, risk analysis
- Upper right = assessing alternativ
- _ower right = final development

Left horizontal axis = includes the major review required to complete each full cycle

LIFECYCLE

Information security in Lifecycle Management

<u>Conception phase</u>: Policies, standards, threats vulnerabilities egal, cost etc. <u>nitiation phase</u>: think about encryption and security specs <u>Development phase</u>: incorporate security specs. Determine access controls, verification <u>mplementation phase</u>: install security software <u>resting phase</u>: test security software and controls, documentation <u>Maintenance phase</u>: revalidate controls pen test, change process

Festing issues Personnel separate from developers should test. Should also check for incorrect data types and data out of range live of actual data might not do so)

JNIT TESTING; testing small piece of software during a development stage by developers and quality assurance

Maintenance and change control

Request control: manages users requests, sets priority, costs and interface **Change control**: recreating and analyzing the problem, developing the change, quality control, tools, documentation, restrictions and recertification and accreditation if necessary **Release control**: issuing latest release of software

Configuration management

<u>Configuration item (CI)</u> component whose state is recorded <u>Version</u>: recorded state of the CI

<u>Configuration</u>: collection of component CI's that make another CI <u>Building</u>: assembling a version of a CI using component CI's <u>Build list</u>: set of versions of component CI's used to build a CI <u>Software Library</u>: controlled area only accessible for approved users

Software capability maturity model (CMM)

Quality of software is a direct function of quality of development and maintenance

Defined by Carnegie Mellon University SEI (Software Engineering Institute)

Describes procedures, principles, and practices that underlie software development process maturity

5 levels

- 1- initiating competent people, informal processes ad-hoc
- 2- repeatable project management processes
- 3 defined engineering processes
- $4-\mbox{managed}-\mbox{product}$ and process improvement, quantitatively controlled

5 – Optimizing – continuous process improvement Works with an <u>IDEAL</u> model.

<u>Initiate</u> begin effort, <u>Diagnose</u> perform assessment, <u>Establish</u> an action plan, <u>Action</u> implement improvements, <u>Leverage</u> reassesses and continuously improve

Object-Orientated systems

Objects behave as black box; they are encapsulated to perform an action. Can be substituted if they have compatible operations. It can store objects like video and pictures

<u>Message:</u> communication to object to perform an action <u>Method:</u> code that defines an action an object performs in response to a message

<u>Behavior:</u> results exhibited by an object in response to a message <u>Class:</u> collection of methods that defines the behavior of objects <u>Instance</u>: objects are instances of classes that contain their methods

<u>Inheritance:</u> methods from a class are by subclass <u>Multiple Inheritance</u>: class inherits characteristics from more than one parent class

<u>Delegation:</u> forwarding a request to another object <u>Polymorphism:</u> objects of many different classes that are related by some common super class. <u>Poly-instantiation:</u> development of detailed version of an object from another object using different values in the new object

5 phases of object orientation

Requirements analysis (OORA) defines classes of objects and their interactions

<u>Analysis</u> (OOA) understanding and modeling a particular problem <u>Domain Analysis</u> (DA) seeks to identify classes and objects that are common to all applications in a domain

Design (OOD)Objects are the basic units, and instances of classes

Programming (OOP) employment of objects and methods

If class = airplane, objects like fighter plane, cargo plane, passenger plane can be created. Method would be what a plane would do with a message like: climb, dive, and roll.

 $\underline{Object \ Request \ Brokers} \ (ORBs): \ middleware \ that \ acts \ as \ locators \ and \ distributors \ of \ the \ objects \ across \ networks.$

Standards

<u>Common object request broker (CORBA)</u> architecture enables programs written in different languages and using different platforms and OS's through IDL (Interface Definition Language) <u>Common object Model (COM)</u> support exchange of objects amongst programs. This used to be called OLE. DCOM is the network variant (distributed)

Conclusion: Object orientation (e.g. with C++ and Smalltalk) supports reuse of objects and reduces development risk, natural in its representation of real world entities.

Cohesion: ability to perform without use of other programs High cohesion: without use of other modules Low cohesion: Must interact with other modules

Coupling: affect on other modules.

High coupling: module largely affects many more modules Low coupling: it doesn't affect many other

Security Life Cycle Components

System feasibility: ISP, Standards, Legal, validation concepts Software Plans & Requirements: Due diligence, Threats, Security requirements

Product Design: incorporate security specs, Design docs, Determine access controls, Verification

Detailed Design: Design access controls & security controls, detailed docs, verification, Consider BCP, employ encryption

Coding: Unit testing, Support BCP, develop docs

Integration product: Refine docs, integrate security, security verification, test integrated modules

Implementation: Install, Test security, Run system, Acceptance testing, Complete documentation, certification, and accreditation **Operations & Maintenance**: Pen test, Change control, update docs, recertification, revalidate security controls

	Artificial intelligence systems	Database Security Issues	Real-time systems
	Expert Systems	Security can be provided through Views. That is a virtual relation	Acquire data from transducers or sensors in real time, and then
	- Based on human reasoning	that combines information from other relations. A view can be	making computations and control decisions in a fixed time
•	 Knowledge base of the domain in the form of rules 	used to restrict data made available for users based on their	window. (e.g. fly-by-wire on airplanes)
	 If-then statements=called forward chaining 	privileges and need-to-know.	Availability is crucial: hence RAID systems are in place.
	 Priority in rules are called salience 	operations: join, project and select (JPS)	
	 Interference system = decision program 	Views will hide information that a user is not allowed to see, thus	Fault talarant: the system has to detect a fault and take action to
2	 Expert system = inference engine + knowledge base 	implementing the LEAST Privilege.	recover
	 Degree of uncertainty handled by approaches as 		lecover
	Bayesian networks(probability of events), certainty		OLTP Online Transaction Processing: clustered databases to
	factors(probability an event is true) or fuzzy logic(to	Granularity is the fineness in with access can be controlled or	provide fault tolerance and high performance. Insure that
>	develop conclusions)	limited	transactions happen properly or not at all
נ	- I wo modes:		Transactions sometimes described as ideally ACID
5	 Forward chaining: acquires into and comes to 	Aggregation is the act of obtaining information of a higher	Atomic: divides transactions into units of work, all modifications
	a conclusion	sensitivity by combining information of lower levels of sensitivity.	take effect or none (then a rollback)
כ	 Backward chaining: backtracks to determine 	lafananan waa tha ahiitti af waana ta dadwaa iafannaatian ahawt	Consistent: all records follow integrity constraints
	IF a hypothesis is correct	Interence: use the ability of users to deduce information about	Isolated: transactions executed in isolation until completed
•	Record on function of hislogic neurops	uala al unaumonzeu levels using imerence chamileis	Durable: not reversible once committed
, ,	- Works with weighted inputs	Data warahausing	
	 If a threshold is exceeded there will be output 	Data warenousing	
	- Single-layer - only one level of summoning codes	Data warehousing is a repository of information from	Things to know
	- Multi-level: more levels of summoning codes	neterogeneous databases that is available for users for making	Noise and perturbatation: inserting bogus information to hope to
_	 Training period needed to determine input vectors 	depend on the primary key)	mislead an attacker
5	- adaptability (learning process)	depend on the phillary key)	CASE= tool for development
		Data mining	First step by change process = management approval.
)	Database systems	Data mining is searching for data correlations in the data	NB: when a question is about processes, there must always be
כ	Database: general mechanism for defining, storing and	warehousing.	management's approval as First step.
	manipulating data without writing specific programs	Con be stored in a concrete detabase with high levels of	
	DBMS: refers to a suite of software programs that maintains and	protection called the Data mart . The information obtained from	PROTOTYPING: customer view taken into account
	provides controlled access to data components store in rows and	data marts can be send back to the data warehouse	SQL -SUDIGR
	columns of a table		Select, Update, Delete, Insert, Grant, Revoke
2		Data dictionaries	Bind variables are placeholders for literal values in SQL query
	Туреѕ	Data dictionaries	Deing sent to the database on a server
	 Hierarchical= tree (sons with only one parent) 	data structures used by an application. If a data dictionary is	detended
2	 Network = tree (all interconnected) 	separated the primary dictionary provides the baseline of the data	Monitor progress and planning of projects through GANTT and
5	- Mesh	and the central control the secondary dictionary to senarate	PERT charts
	- Object-orientated	development projects, provide backup for primary and to serve as	Check digit : point of verification in an computerized application
-	- Relational – has DDL and DML, has TUPLES and	a partition between the development and test databases	Semantic integrity: make sure that the structural and semantic
	ATTRIBUTES (rows and columns)		rules are enforced on all data types, logical values that could
	DDI Data definition language defines structure and scheme	Centralized Architecture	adversely affect the structure of the database
	DDL - Data definition language defines structure and schema	Centralized systems are less difficult to protect because they are	Referential integrity: all foreign keys reference existing primary
-	the database via VIEW ADD MODIEY SORT and DELETE	not interconnected through a network	keys
	commands	Distributed systems are interconnected through a network	Foreign and primary keys uniquely identify a record in a
	DDF – Dynamic data exchange enables applications to work in a	Distributed systems are interconnected through a network.	database
	client/server model by providing the interprocess communications		Dynamic Lifetime Objects: Objects created on the fly by
	mechanism (IPC)		software in an Object Oriented Programming environment.
5	DCL – Data control language subset of SQL used to control		An object is preassembled code that is a self-contained module
	access to data in a database, using GRANT and REVOKE		
	statements		

Mobile code	Virus	System Development Life Cycle
Java - sandboxes, no warnings, programs are compiled to byte-	Boot sector – moves or overwrites the boot sector with the	Project initiation: Feasibility, cost, risk analysis, Management approval,
code	virus code.	basic security objectives
dialogs people click away	System infector – infects BIOS command other system	Functional analysis and planning: Define need, requirements, review
ulalogs people click away	files. It is often a memory resident virus.	proposed security controls
Malicious code threats		System design specifications: Develop detailed design specs, Review
Virus reproduces using a host application. It inserts or attaches	Compression – appended to executables	support documentation, Examine security controls
itself to the file	O manufacture A manufacture of the sector of the	Software development: Programmers develop code. Unit testing Check
	Companion virus - A specific type of virus where the	Acceptance testing and implementation. Separation of duties
worm reproduces on its own without nost application	separate 'companion' files. For example, the virus might	Acceptance testing and implementation. Separation of duties,
Logic Bomb/Code Bomb executes when a certain event	rename the standard NOTEPAD.EXE file to NOTEPAD.EXD	accreditation
happens (like accessing a bank account) or a data/time occurs	and create a new NOTEPAD.EXE containing the virus code.	Operations and maintenance: release into production
	When the user subsequently runs the Notepad application,	Certification/accreditation
Trojan Horse program disguised as a useful program/tool	the virus will run first and then pass control to the original	Revisions/ Disposal: remove Sanitation and destruction of unneeded
	advantage of search order of an OS	data
YOUR COLLEGUES		Software Life Cycle
	Stealth virus – hides modifications to files or boot records	Requirements
Remote Access Trojan (RAT) remote control programs that	and itself	Design
have the malicious code and allow for unauthorized remote	Multinart virus - infects both the boot sector and executable	Programming
access Back onlice, sub seven, net bus)	files; becomes resident first in memory and then infects the	Testing
Botnet compromise thousands of systems with zombie codes	boot sector and finally the entire system	Conversion
can be used in DDOS attacks or spammers		Operations
	Self-garbling virus – attempts to hide by garbling its code;	Maintenance
Buffer Overflow Excessive information provided to a memory	as it spreads, it changes the way its code is encoded	More things to know
an elevation of privilege. If executable code is loaded into the	Polymorphic virus – this is also a self-garbling virus where	 Black-box testing observes the system external behavior.
overflow, it will be run as if it were the program.	the virus changes the "garble" pattern each time is spreads.	 White-box testing is a detailed exam of a logical path,
Buffer overflows can be detected by disassembling programs	As a result, it is also difficult to detect.	Compiled code poses more risk than interpreted code
and looking at their operations.	Macro virus – usually written in Word Basic, Visual Basic or	because malicious code can be embedded in the compiled
directly patching system memory	VBScript and used with MS Office	code and can be difficult to detect.
anoony patering system memory.		 Regression testing is the verification that what is being
Trap Door An undocumented access path through a system.	Resident virus – Virus that loads when a program loads in	installed does not affect any portion of the application system
This typically bypasses the normal security mechanisms and is	memory	aiready installed. It generally requires the support of automated process to repeat tests previously undertaken
to plant any of the malicious code forms.	Non-resident virus - attached to exe	 Code comparison is normally used to identify the parts of the
Backdoor program installed by an attacker to enable him to		source code that have changed.
come back on a later date without going through the proper		 Integration testing is aimed at finding bugs in the relationship
authorization channels	ANTI-Virus	and interfaces between pairs of components. It does not
	Signature based cannot detect new malware	normally test all functions.
Covert Channel Is a way to receive information in an	Heuristic behavioral can detect new malware	Onit testing is the testing of a piece of code. It will only detect orrers in the piece of code being tested
security mechanism	-	Control Acquiración Societte
<u>Covert Storage Channel</u> Writing to storage by one process and	Programs	Breventative Data checke Labela traffic DBMS data
reading by another of lower security level.	Compiler Translates higher level program into an	validity padding dictionary
<u>Covert Timing Channel</u> One process relays to another by	Interpreter reads higher level code, one line at the time to	checks encryption
Countermeasures: FAL6 systems have less than FAL3 systems	produce machine instructions	Detective Cyclic IDS audit Comparison
because covert channels are normally a flaw in design.	Assembler converts machine-code into binary machine	Redundancy trails tools
LOKI is a tool used for covert channel that writes data directly	instructions. Translate assembly language into machine	Corrective Checkpoint Emergency Database
after the ICMP header	language.	backups response controls

DRIVERS	Roles and responsibilities	
 Business need to minimize loss. Online service providers like Google and EBay and NYSE need to be online Retain value. Customer records = high value, lost data reduces brand quality Regulatory compliance Utility companies (gas energy water) Government (FISMA, NIST) Finance (sox, FFIEC Basel II) Healthcare (HIPAA) 	 BCP committee Senior staff (ultimate responsibility, due care/diligence) Various business units (identify and prioritize time critical systems) Information Systems Security Administrator People who will carry out the plan (execute) Representatives from all departments 	BIA Goal: to create a document to be us impact a disruptive event would have - Gathering assessment of Org charts to durelationships o Examine busine - Vulnerability assessme o Identify Critical
BCP Plan for emergency response, backup operations and post- disaster recovery maintained by an activity as a part of its security program that will ensure the availability of critical resources and facilitate the continuity of operations in an emergency situation NIST 3 Phases of actions - Notification/activation - Recovery - Reconstitution (back up and running)	 Role of IT department Make sure that adequate backup restore processes are available, including off-site media storage Employ sufficient physical security mechanisms to protect network and hardware components Ensure that the organization uses sufficient logical security measures for protecting sensitive data Ensure that departments implements adequate system administration, including up-to-date inventories of hardware, software and media storage 	 Identify disrupti Tolerable Down Loss Quantitati repair) or qualitient embarrassmen medium. Develop recover Analyze the compiled in Occument the polymore Identify inter-de Determine accession Occumentation and Reconstruction to
BCP&DRP Goals Business continuity- Ensuring the business can continue in an emergency - Focus on business processes - Scope/plan initiation - Part of your security program - Need for management support - BIA – business impact analysis - BCP Development - At least once a year testing Disaster Recovery – Recover as quickly as possible - Heavy IT focus - Allows the execution of the BCP - Needs Planning - Needs Testing	 BCP goals Prevent interruption to normal business activity and critical business process Minimize the effects of a disaster Quick recovery of all business Should cover: #1 PEOPLE (ALWAYS FIRST) LAN/Wan Telecom, data links Workstations and workspace Application software and DATA Media and record storage Staff duties	Business Continuity plans Defining the continuity str of hardware/so lines/applicatio Facilities People: operation Supplies and e Documenting the continuity

Threats

Natural (Fires, explosions water, storm) Man made (bombing, strikes, toxin spills)

- **BIA** helps to understand impact of disruptive
- processes 3. Business Continuity Plan development
 - a. Use BIA to develop BCP
 - b. Testing
- 4. Plan approval and implementation
 - Management approval -
 - Create awareness -
 - Update plan as needed -

sed to help understand what ve on the business

- material
 - letermine functional
 - less success factors
- ent
 - IT resources out of critical
 - ion impacts and Maximum ntime (MTD)
 - ive (revenue, expenses for itative (competitive edge, public nt). Presented as low, high,
 - ery procedures
 - nformation
 - process
 - ependability
 - eptable interruption periods
- commendation
 - management

development

- rategy
 - rategy to preserve the elements oftware/communication ons/data
 - of main buildings or any remote
 - tors, management, technical าร
 - equipment: paper, forms HVAC
- uity strategy

 ω Domain

Disaster Recovery Planning

Statement of actions that have to be taken before, during and after a disruptive event that causes a significant loss of information Goal: provide organized way for decision making, reduce confusion and deal with the crisis. Planning and development must occur before the disaster

BIA has already been done, now were going to protect!

Disaster Planning Process

- Disaster Processing Continuity plan
- Disaster Recovery plan maintenance

Disaster Processing Continuity plan

Mutual aid agreements (aka reciprocal agreement) Arrangement with another similar corporation to take over processes. Advantage: cheap. Disadvantage: must be exact the same, is there enough capability, only for short term and what if disaster affects both corporations. Is not enforceable.

Subscription services

Third party, commercial services provide alternate backups and processing facilities. Most common of implementations!

- <u>HOT SITE</u> Fully configured computer facility. All applications are installed, up-to-date mirror of the production system. For extremely urgent critical transaction processing. Advantage: 24/7 availability and exclusive use are assured. Short and long term. Disadvantage: extra administrative overhead, costly, security controls needs to be installed at the remote facility too. Exclusive to one company
- WARM SITE Cross between hot and cold site. The computer facility is available but the applications may not be installed or need to be configured. External connections and other data elements that take long time to order are present. Workstations have to be delivered and data has to be restored. Advantage: Less costly, more choices of location, less administrative resources. Disadvantage: it will take some time to start production processing. Nonexclusive.
- <u>COLD SITE</u> Least ready but most commonly used. Has no hardware installed only power and HVAC. Disadvantage: Very lengthy time of restoration, false sense of security but better than nothing. Advantage: Cost, ease of location choice. Nonexclusive

Multiple centers (aka dual sites)

Processing is spread over several computer centers. Can be managed by same corporation (in-house) or with another organization (reciprocal agreement). Advantage: costs, multiple sites will share resources and support. Disadvantage: a major disaster could affect both sites; multiple configurations have to be administered.

Service bureaus

Contract with a service bureau to fully provide alternate backup processing services. Advantage: quick response and availability, testing is possible. Disadvantage: expense and it is more of a short time option.

Other data center backup alternatives

- <u>Rolling/mobile sites</u>. Mobile homes or HVAC trucks. Could be considered a cold site
- In-house or external supply of hardware replacements.
 Stock of hardware either onsite or with a vendor. May be acceptable for warm site but not for hot site.
- Prefabricated buildings. A very cold site.

Transaction Redundancy Implementations

Electronic vaulting transfer of backup data to an offsite storage location via communication lines

Remote Journaling parallel processing of transactions to an alternative site via communication lines

Database shadowing live processing of remote journaling and creating duplicates the database sets to multiple servers

Disaster recovery plan test types

- 1. **Checklist test** copies of the plan are distributed to management for review
- 2. **Structured Walk-Through test** business unit management meets to review the plan
- 3. **Simulation test** all support personnel meet in a practice room
- 4. Parallel test Critical systems are run at an alternate site
- 5. **Full-Interruption test** Normal production shut down, with real disaster recovery processes

Backup types

Full All files, archive bit and modify bit are cleared. Advantage: only previous day needed for full restore, disadvantage: time consuming

Incremental only modified files, archive bit cleared, Advantage: least time and space, Disadvantage: first restore full then all incremental backups, thus less reliable because it depends on more components

Differential: only modified files, <u>doesn't clear archive bit</u>. Advantage: full and only last diff needed, Intermediate time between full and diff.

Disaster recovery process TEAMS

Recovery team mandated to implement recovery after the declaration of the disaster

Salvage team goes back to the primary site to normal processing environmental conditions. Clean, repair, Salvage. Can declare when primary site is available again

Normal Operations Resume plan has all procedures on how the company will return processing from the alternate site Other recovery issues

Interfacing with other groups: everyone outside the corporation Employee relations: responsibility towards employees and their families

Fraud and Crime: like vandalism, looting and people grabbing the opportunity

Financial disbursement

Media relations

Things to know

The disaster is not over until all operations have been returned to their normal location and function It will be officially over when the data has been verified at the

primary site, as accurate

RTO: recovery time objectives. Refers to business processes not hardware.

RTO 5 minutes or hours \rightarrow Hot site; RTO 1-2 days \rightarrow warm site RTO 3-5 days \rightarrow mobile site; RTO 1-2 weeks \rightarrow cold site

Backup storage media

Tape: sequential, slow read, fast write 200GB an hour, historically cheaper than disk (now changing), robotic libraries Disk fast read/write, less robust than tape Optical drive: CD/DVD. Inexpensive Solid state: USB drive, security issues **MTTF** (mean time to failure) MTTR (mean time to repair) **MTBF** Mean time between failures (Useful Life) = MTTF + MTTR RPO -Recovery Point Objective: Point in time that application data must be recovered to resume business functions **MTD** -Maximum Tolerable Downtime: Maximum delay a business can be down and still remain viable MTD minutes to hours: critical MTD 24 hours: urgent MTD 72 hours: important MTD 7 days: normal MTD 30 days non-essential

Ethics Б q G Investigation aw, L 5 omain

Terms

Wire Tapping eavesdropping on communication -only legal with prior consent or warrant

Dumpster Driving act of going through someone's trash to find useful or confidential info -it is legal but unethical in nature Phishing act of sending spoofed messages that pretend to originate from a source the user trusts (like a bank) Social Engineering act of tricking someone into giving sensitive or confidential info that may be used against the company Script kiddie someone with moderate hacking skills, gets code from the Internet.

Data Diddling act of modifying information, programs, or documents to commit fraud, tampers with INPUT data **Privacy Laws** data collected must be collected fairly and lawfully and used only for the purpose it was collected.

Computer Crime Laws -3 types of harm

- unauthorized intrusion,
- unauthorized alteration or destruction
- malicious code

Admissible evidence relevant, sufficient, reliable Red boxing: pay phones cracking

Black Boxing manipulates toll-free line voltage to phone for free Blue Boxing tone simulation that mimics telephone co. system and allows long distance call authorization Phreakers hackers who commit crimes against phone companies

Salami removal of a small amount of money otherwise known as skimming

Hearsay second-hand data not admissible in court

Federal Sentencing provides judges and courts procedures on Guidelines the prevention, detection and reporting of crimes that should occur by a company official and made company executives responsible for the company's actions

Due Care

Which means when a company did all that it could have

reasonably done to try and prevent security breach / compromise / disaster, let's call it damage and took the necessary steps required as countermeasures / controls, let's call it safeguards. The benefit of "due care" can be seen as the difference between the damage with or without out "due care" safeguards in place. AKA doing something about the threats

Due Diligence

means that the company properly investigated all of its possibly weaknesses and vulnerabilities AKA understanding the threats **Enticement** is the <u>legal</u> action of luring an intruder, like in a honeypot

po

Entrapment is the <u>illegal</u> act of inducing a crime, the individual had no intent of committing the crime at first

Five rules of evidence:

- Be authentic
- Be accurate
- Be complete
- Be convincing
- Be admissible

Ethics

Just because something is legal doesn't make it right. Within the ISC context: Protecting information through CIA

Code of Ethics Canons:

Protect society, the commonwealth, and the infrastructure.
Act honorably, honestly, justly, responsibly, and legally.
Provide diligent and competent service to principals.
Advance and protect the profession.

Internet Advisory Board (IAB) Ethics and Internet (RFC 1087):

Access to and use of Internet is a privilege and should be treated as such

It is defined as unacceptable and unethical if you for example gain unauthorized access to resources on the internet, destroy integrity waste resources or compromise privacy.

Corporate Officer Liability

Executives are now held liable if the organization they represent is not compliant with the law.
Negligence occurs if there is a failure to implement recommended precautions, if there is no contingency/disaster recovery plan, failure to conduct appropriate background checks, failure to institute appropriate information security measures, failure to follow policy or local laws and regulations.

Law

Common law: USA, UK Australia Canada (judges)

Civil law: Europe, south America

Islamitic and other Religious laws: middle east Africa Indonesia

<u>USA</u>

3 branches for laws:

Legislative: writing laws (statutory laws). Executive: enforces laws (administrative laws) Juridical: Interprets laws (makes common laws out of court decisions)

3 categories

<u>Criminal law</u> – individuals that violate government laws. Punishment mostly imprisonment

<u>Civil law</u> – wrongs against individual or organization that result in a damage or loss. Punishment can include financial penalties. AKA tort law (I'll Sue You!) Jury decides upon liability

Administrative/Regulatory law - how the industries,

organizations and officers have to act. Wrongs can be penalized with imprisonment or financial penalties

Intellectual property laws

Patent grants ownership of an invention and provides enforcement for owner to exclude others from practicing the invention. After 20 years the idea is open source

Copyright protects the expression of ideas but not necessarily the idea itself

Trade Secret something that is propriety to a company and important for its survival and profitability (like formula of Coke or Pepsi)

Trademarks words, names, product shape, symbol, color or a combination used to identify products and distinguish them from competitor products (McDonald's M)

Incident Response

Events: anything that happens. Can be documented verified and analyzed

Incident: event or series of events that adversely impact the ability of an organization to do business

<u>Framework:</u> Response Capability (policy, procedures, a team), Incident response and handling (Triage, investigation,

containment, and analysis & tracking), **Recovery** (Recovery / Repair), **Debriefing / Feedback** (External Communications, Metrics)

Regulations

SOX 2002 after ENRON and World Online debacle

Independent review by external accountants. Section 302: CEO's CFO's can be sent to jail when information they

sign is incorrect.

Section 404 is the about internal controls assessment: describing logical controls over accounting files; good auditing and information security.

European laws:

Need for information security to protect the individual. <u>Privacy</u> is the keyword here! Only use information of individuals for with it was gathered

(remember ITSEC, the European version of TCSEC that came from the USA/orange book, come together in Common criteria, but there still is some overlap)

- strong in anti spam and legitimate marketing
- Directs public directories to be subjected to tight controls
- Takes an OPT-IN approach to unsolicited commercial electronic communications
- User may refuse cookies to be stored and user must be provided with information
- Member states in the EU can make own laws of e.g. retention of data

	Evidence	Witnesses	Investigation
	Sufficient -persuasive enough to convince one of the validity of	Opinion Rule	MOM means, opportunity and motive
	the findings	-Requires witnesses to testify only about the facts of the case,	Determine suspects
	Reliable – consistent with fact	cannot be used as evidence in the case.	Victimology –why certain people are victims of crime and how
	Relevant –relationship to the findings must be reasonable and	Expert Witnesses	lifestyle affects the chances that a certain person will fall victim to a
	sensible	-Used to educate the jury, can be used as evidence.	crime Investigation
	Preserved and identifiable – collection, reconstruction	Admissibility of evidence	Target Risk Assessment – why was target chosen – history of target
	EVIDENCE LIFECYCLE	For evidence to be admissible it must be:	•Crime scene characteristics
	1. Discovery		•Attacker skill level
	2. Protection	Relevant	•Intent
	3. Recording	 Proof of crime, documentation of events, proof of acts and 	When investigating a hard drive, don't use message digest because
	4. Collection and identification	methods used, motive proof, identification of acts	it will change the timestamps of the files when the file-system is not
	5. Analysis	Levelly permissible obtained in a lowful menner	set to Read-Only
	7. Present in court	•Avoid: unlawful search and seizure, secret recording, privacy	Slack space on a disk should be inspected for hidden data and
5	8 Return to owner	violations, forced confessions, unlawful obtaining of evidence	should be included in a disk image
Ü	Types of evidence		
	Best Evidence:	Reliable evidence has not been tampered with or modified	Interviewing and Interrogation
H	-Primary Evidence-is used at the trial because it is the most	 . .	Interviewing –To ultimately obtain a confession, discover
	reliable.	Identification labeling, recording serial number etc.	information
	-Original documents-are used to document things such as	Evidence must be preserved and identifiable	Interrogation–Evidence retrieval method
q	contracts –NOTE: no copies!	•Collection documentation classification comparison	The Process
Ē	-Note: Oral is not best evidence though it may provide	reconstruction	-Prepare questions and topics, put witness at ease, summarize
F	interpretation of documents, etc.	•Witnesses that evidence is trustworthy, description of	information –interview/interrogation plan
	Secondary Evidence	procedures, normal business methods collections, error	-Have one person as lead and 1-2 others involved as well -never
Ц	-Not as strong as best evidence.	precaution and correction	interrogate or interview alone
0	-A copy, Secondary Evidence, is not permitted if the original, Best	Laws	Things to know
ij	Evidence, is available	1974 US Privacy Act: Protection of PII on federal databases	Hackers and crackers want to verify their skills as intruders
D	-Copies of documents.	Development (OECD): Provides for data collection	Notebook: most preferred in the legal investigation is a bound
00	-Oral evidence like Witness testimony	specifications, safeguards	notebook, pages are attached to a binding.
	Direct Evidence:	1986 (amended in 1996) US Computer Fraud and Abuse	Exigent circumstances allows officials to seize evidence before its
S	-Can prove fact by itself and does not need any type of backup	Act: Trafficking in computer passwords or information that	destroyed (police team fall in)
ä	information.	causes a loss of \$1,000 or more or could impair medical	Data haven is a country or location that has no laws or poorly
δ	-Testimony from a witness -one of their 5 senses:	treatment.	enforced laws
	•Oral Evidence is a type of Secondary Evidence so the case can't	1986 Electronic Communications Privacy Act: Pronibits	Chain of custody = collection, analysis and preservation of data
	simply stand on it alone	1987 US Computer Security Act: Security training develop a	Forensics uses bit-level copy of the disk
	•But it is Direct Evidence and does not need other evidence to	security plan, and identify sensitive systems on govt agencies.	Residual risk = where cost of applying extra countermeasures is
3	substantiate it	1991 US Federal Sentencing Guidelines: Responsibility on	more than the estimated loss resulting from a threat or vulnerability
F	Conclusive evidence	senior management with fines up to \$290 million. Invoke	(C > L). Legally the remaining residual risk is not counted when
. Ĭ	 Irrefutable and cannot be contradicted 	prudent man rule. Address both individuals and organizations	deciding whether a company is liable.
—	-Requires no other corroboration	1996 US Economic and Protection of Propriety	
L	Circumstantial evidence	1996 Health Insurance and Portability Accountability Act	FAIR INFORMATION PRACTICES
6	–Used to help assume another fact	(HIPPA)	Openness
	-Cannot stand on its own to directly prove a fact	1996 US National Information Infrastructure Protection	Collection Limitation
I	Corroborative Evidence:	Act: Encourage other countries to adopt similar framework.	Purpose Specification
J.	-Supports or substantiates other evidence presented in a case		Use Limitation
];	Hearsay Evidence something a witness hear another one say.	Interstate commerce clause: Federal government has power	Data Quality
U	Also business records are hearsay and all that's printed or	נט ובשטומוב מוו נומעב שבושבבוו שומובש.	Individual Participation
0	displayed. One exception to business records: audit trails and		Security Safeguards
	business records are not considered hearsay when the documents		Accountability
	are created in the normal course of business.		

	THREATS	Electrical power	Fire
	Natural environment threats (earthquakes floods, tornadoes)	Interference	Prevention
	Supply system threats (power communications water gas)	Clean-no interference	Training construction, supplies, reach ability
	Manmade threats (vandalism, fraud, theft)	Line noise: can be EMI or REI	Detection
	Politically motivated threats (terroristic attacks, riots bombings)	Troppingt: chart duration of point	Manual: pull boxes
		Countern units and an analytic and the second line	Automatic dial- up: Fire department aka Auxiliary station alarm
	l ife safety takes precedencell	Counter: voltage regulators, grounding/snielding and line	Detectors:
	Life salety takes precedence:	conditioners	Smoke activated
	Lavered defense model: all physical controls should be work		- Sinoke activated,
	together in a tiered architecture (stacked lavers)	EMI	- Heat activated,
		COMMON mode noise: difference between hot and ground	- Flame activated(Infrared)
	Vulparability-waaknoog throat - comeano will identify the	Traverse mode noise: difference between hot and neutral	
	vullerability=weakness threat = someone will identify the	HINT: commongrounds	Classes
	weakness and use it against you and becomes the threat agent		A Common WATER, SODA ACID
		Excesses	B LiquidsGAS/CO2, SODA ACID
	Risk analysis>Acceptable risk level>baseline>implement	SPIKE: short high voltage	C ElectricalGAS/CO2
	countermeasures	SURGE: long high voltage	D MetalsDRY POWDER
		Counter: surge protector	
	Major sources:		WATER suppress temperature
	Temperature	1 02220	SODA ACID reduces fuel supply
	Gases	EALIL T: short outage	CO2 reduces oxygen
	Liquids	BLACKOLIT: long outage	HALON chemical reaction
	Organism: viruses, bacteria	Counter: Backup power	
	Projectiles: cars. trucks. bullets	Long term: Backup Power generator	Fire distinguishers should be 50 feet from equipment and toward
	Movement: Collapse, earthquakes	Short torm: LIPS	the door
	Energy: radio radiation	Online uses as line voltage to charge bettering, newer always	
	CONTROLS	-Online uses at line voltage to tharge ballenes, power always	Heat
		Chandley UPC in active till newen deven	Computer bardware 175E (80c)
5	Physical (Fences Trees Locks)	-Standby OPS, mactive till power down	Magnetic storage 100F (37c)
× .	Administrative (badges clothing procedures)	Design definit	Paper 350E $(176c)$
Ψ.	rechnical (Alarms Humidity AC neat cameras)	Degradation	
		SAG/DIP: short low voltage	Sprinklers
-	IYPES OF CONTROL	BROWNOUT: long low voltage	Wet nine
đ	Preventive (guards dogs firewall)	Counter: constant voltage transformers	alwaya containa watar, fuca nazzla malta at 1655
చ	Detective (CCTV, motion detectors audit logs)		
	Corrective (IDS Antivirus)	Other	<u>Dry pipe</u>
S	Deterrents (fences, alarms personnel)	Inrush Surge: surge of current required to power on devices	Deluce
\succ	Recover (backup)	Common-mode noise: radiation from hot and ground wires	Deuge
`	Compensating (monitoring supervising)	Traverse-mode noise: radiation from hot and neutral wires.	
			Pre-action (MOST RECOMMENDED)
			water in tanks, first water in pipes when air is lost when heat is
		Static charge	detected, then thermal link in nozzle melts to release water
		40 sensitive circuits	
		1000 scramble monitor display	HALON
		1500 disk drive data loss	1211 = portable
		2000 system shutdown	1301 = flooding
		4000 Printer Jam	FM-200 most common replacement (others: CEA, NAF, FE-13
		17000 Permanent chip damage	Argon INERGEN Low Pressure Water)
5		Use antistatic spray and flooring, ground rooms properly	
			RESISTANCE

Humidity <40% static electricity up to 20.000 volts NORMAL 40-60% up to 4000 volts >60% corrosion

Walls: 1 hour fire rating and adjacent room with paper 2 hours

(. j, Dom

Locks

Warded lock hanging lock with a key Tumbler lock cylinder slot Combination lock 3 digits with wheels Cipher Lock Electrical Device lock bolt down hardware

Preset ordinary door lock Programmable combination or electrical lock

Raking = circumvent a pin tumbler lock

Lightning

Glare protection against blinding by lights Continuous lightning evenly distributed lightning Controlled lightning no bleeding over no blinding Standby Lightning timers Responsive areas illumination IDS detects activities and turns on lightning NIST: for critical areas the area should be illuminated 8 feet in

height with 2-foot candle power

Fences

Small mesh and high gauge is most secure 3-4 feet deters casual trespasser 6-7 feet to hard to climb easily 8 feet + wires deters intruders. no one STOPS a determined intruder

Location

CPTED Crime Prevention Through Environmental design

- Natural Access control: guidance of people by doors fences bollards lightning. Security zones defined
- Natural surveillance: cameras and guards
- Territorial Reinforcements: walls fences flags

Target Hardening: focus on locks, cameras guards Facility site: CORE OF BUILDING (thus with 6 stores, on 3rd floor)

FAIL SAFE: doors UNLOCK FAIL SECURE: doors LOCK

CCTV

Multiplexer allows multiple camera screens shown over one cable on a monitor Via coax cables (hence closed) Attacks: replayed (video images) Fixed mounting versus PTZ Pan Tilt Zoom accunicator system (detects movements on screen and alerts guards) Recording (for later review) = detective control

Intrusion detection

PHYSICAL PARAMETER DETECTION Electromechanical: detect a break or change in a circuit magnets pulled lose, wires door, pressure pads Photoelectric: light beams interrupted (as in an store entrance) Passive infrared: detects changes in temperature acoustical detection: microphones, vibrations sensors MOTION wave pattern motion detectors: detects motions proximity or capacitance detector: magnetic field detects presence around an object

Audit trails

Date and time stamps Successful or not attempt Where the access was granted Who attempted access Who modified access privileges at supervisor level

Security access cards

Photo id card: dumb cards Digital-coded cards:

- Swipe cards Smartcards •
- Wireless proximity cards

User activated •

- System sensing
 - Passive device, no battery, uses power of the field
 - Field Powered device: active electronics. 0 transmitter but gets power from the surrounding field from the reader
 - 0 Transponders: both card and receiver holds power, transmitter and electronics

ALARMS

Local alarms audible alarm for at least 4000 feet far Central stations less than 10mins travel time for e.g. an private security firm Proprietary systems owned and operated by the customer. System provides many of the features in-house Auxiliary Station systems on alarm ring out to local fire or police Line supervision check if no tampering is done with the alarm wires Power supplies alarm systems needs separate circuitry and backup power Data destruction and reuse Object reuse: use after initial use Data remanence: remaining data after erasure Format magnetic media 7 times (orange book) Clearing: overwriting media to be reused Purging: degaussing or overwriting to be removed Destruction: complete destroy preferably by burning Other things to know Piggybacking: looking over someone's shoulder to see how someone gets access. Data center should have: • Walls from floor to ceiling Floor: Concrete slab: 150 pounds square foot No windows in a datacenter Air-conditioning should have own Emergency Power Off (EPO) Electronic Access Control (EAC): proximity readers, programmable locks or biometric systems

Order of actions when fire is detected:

- Evacuate the facility
- Shut down computer systems and power if possible
 - Inform facility management contract fire department

ecurity S cal hysid 0 in 5 om