SANE 2006 - CF Engine 1 15/05/06 11:03

De agenda op pagina 1 is voor de hele dag. Na “hoofdstuk” 6 volgt de
lunch.

Hehe... Op de pagina van wie CFEngine gebruiken staat Snow.nl ook
genoteerd! <3

CF Engine’s doel = om configuration te laten matchen aan policy.

CF Engine is made of convergent operations -> we know where we want
to go and we know where we are. What CF Engine does should always
bring you closer to your goal. If there are no steps to be undertaken, CFE
shouldn’t do anything. Compare it to your immune system.

cfagent is the main part of CFE which executes many of the actions CFE
should undertake.

cfexecd is used as the CFE scheduler and can be run:
* as a replacement for cron (windows)
e from cron
e aside to cron

cfenvd detects anomalies on your system, as compared to the policy set
for the system or its original state. For that the daemons has learning
capabilities.

cfservd is the file collector. The CFE server pulls files from its clients. You
cannot push.

CFE bestaat al bijna veertien jaar! En er zijn maar drie security advisories
geweest over deze software! Da’s erg goed...

As part of your policy you'll have an instruction to collect newer versions
of the policy. This is the way you update your policies! So instead of
telling the system to do something, you’ll ask it to adhere to its current
policy. All of this with a keen eye on security.



The only way to hack into a client is by hacking into the CFE server. You
should be very strict on securing your CFE server, since its an SPOF. You
could also choose to not centralise your infrastructure.

There is no built-in function to download policies from multiple servers to
compare them. You —could- build this yourself though.

Chapter two: installation

De Darwin Ports versie van CFE slaat z'n binaries op in /opt/local/sbin.
De local files directory /var/cfengine bestaat vreemd genoeg nog niet.
Als je met port contents cfengine kijkt, zie je dat het
/opt/local/var/cfengine is. Jammer dat /var/cfengine hard-coded in
CFE zit. Je moet dus een symlink aanleggen onder OS X.

I tried the example from the sheet “Test it!” and it works :) Output
explained ->

field 1 = CFE identifier

field 2 = (blank) name of host running the CFagent

field 3 = summary of shell command run (first 15 characters). You can
use a script with a descriptive name or a macro to make this more
readable (see sheet “update.conf#2").

field 4 = output of shell command run

CFE, by default, will not allow you to run action more than once a minute.
So if you run cfagent -f ./cfagent.conf twice within ten seconds, the
second run will not provide output. This will prevent you from DoSing
yourself. There are naturally also locks implemented to see that CFE is
not running currently. Hence there’s protection from looping.

CFE actually uses two policies: one to describe the system’s policy and
one to describe the process for updating the system’s policy :) This
prevents you from borking up your configuration completely. If they were
in one file a mistake would prevent you from re-updating the config.

Anything with two colons (:) in cfservd.conf dictates that the following
should only be run when a certain condition is true. See sheet
“Policyhost: masterfiles”.



The control section is used to set variables. The various action sequences
defined in the control section define the actions to be undertaken.

You should not configure stuff by hand. CFE is only so smart... If you
have a slight permutation of the line you want to enter in file A —already-
in file A, then CFE will add the new line as well. Hence you could end up
with two entries in cron. So don't edit files that are managed by CFE
manually.

The various checks/conditions you can build into your cfagent.conf file
are actually defined classes. You can get a list of currently defined classes

by running cfagent —v. All of these are automatically defined by probes
built into CFE.

< en we gaan door na de koffie break >

“Examples” sheet:

* The dot is a logical AND

* The pipe is a logical OR

* The class PasswordClients is a custom defined class which can be
a list of hostnames in a text file or a database. We'll cover
custom classes RSN.

* Let’s say that the PasswordClients rule gets run again and the
permissions have changed (yet the contents have not). In that
case CFE will reset the permissions to how they should be. It will
not re-copy the files, since the checksum is still the same.
Copying a file by CTIME though —would- make things different.

Chapter 3: CFEngine rules!

Config files can be made as readable as you like, so they can be used as
backup documentation for your systems. With some restrictions you can
format them as you like.

Every host reads every config file and then picks out the parts that are
relevant to it. So you could put all rules into one huge file, or you could
split them across many files that get included for certain classes.



CFEv3 will hopefully remove the need for the ActionSequence variable. Or
at least remove the ordering of actions from that variable.

The force class is something that can be used to force running certain
rules when using cfagent with the -d flag.

< Mark besluit dingen aan te wijzen op het bord door er met een
bordenwisser tegen aan te gooien. Totdat hij een stok krijgt aangereikt >

A class can be based on anything that can be measured from the working
environment. The presence of a file for example. When defining a class of
your own the minus (-) means to exclude the item followed by it.

QUESTION: what happens when a hostname coincides with a hard defined
class name?
ANSWER: that’s bad design on your side ;p

When defining a selector using parentheses is not required, but it does
make things more readable. For now assume that AND gets priority above
OR.

In CFE a spool directory contains files which are only named after valid
users of the system. This is handy when you’d like to cleanup file for
users that no longer exist.

Hard classes and variable names are NOT case sensitive. User-defined
names are however. TRICKY!

QUESTION: How do you deal with a “standard build” situation?

ANSWER: Ideally you install a standard version of the OS and most of
your applications. From there on install CFE and then let CFE perform the
standard configuration. The SVN/Webserver case is an example of this.

The LastSeenExpireAfter variable can be used for host availability
monitoring.



You could also choose to let CFE install your packages for you (standard
build), but then you will need to create your own modules for that.

CFE Execution Sequence

cf.preconf is run to verify that basic stuff like a root account and some
requisite groups are present on the system.

If you are going to use imported/included config files: use the main config
file only to refer to these files. Else you're going to get things mixed up.

You can define new classes interactively when taking a certain action. For
example, when installing a new CFE binary you can set New-CFE which
will then be used at a later point in time to restart the CFE daemons.

uestions

Yes, you can use subnet notation when defining network addresses:
192.168.0.1/24.

Currently CFE is already parallelizable, but I don't think it’ll become -
more- parallel (but I hope so) when we remove the ordering from the
ActionSequence.

Yes, you can call one action multiple times within one config file. This may
seem smart at times, but you could also try and rethink your setup.

No, there is no default policy for cleaning up its backup repository. But
you can include this in your own policy.

The website contains no example configs since everyone seems to be too
affraid to show what they’re running. Christian Pierce has written a style
guide though and the Wiki contains some contributions. There are also a
bunch of companies setting up consulting services revolving around CFE.



